

- pose changing
- look realistic.

network.

pose variations.

Problem/Challenge Proposed Methods Problem. Overall of our proposed framework. Person re-identification aims at matching Generator pedestrians observed from non-overlapping camera views. **Challenge.** (a) Pedestrian appearance variations caused by (b) GANs aim at generating images which just Generated dataset (c) The manner of data augmentation is simply. Generator **D** Pose transfer generative adversarial network. $\mathcal{L}(G,D) = \mathcal{L}_{cGAN}(G,D) + \lambda_1 \mathcal{L}_{L_1} + \lambda_2 \mathcal{L}_{s}$ $\mathcal{L}_{s} = \mathbb{E}_{x, p \sim p_{data}} \left[\left\| f(x_{f}) - f(x_{s}) \right\|_{2}^{2} - \left\| f(x_{f}) - f(x_{n}) \right\|_{2}^{2} + \alpha_{1} \right]_{+}$ Contribution $+\mathbb{E}_{x,p\sim p_{data}}\left[\left\|f(x_{f})-f(x_{t})\right\|_{2}^{2}-\left\|f(x_{f})-f(x_{s})\right\|_{2}^{2}+\alpha_{2}\right]_{+}$ **D** Pose transfer generative adversarial □ Hard Example Mining with Replaceable Sample. Our method learn a pose transfer GAN for synthesizing realistic images conditional on pose with considering the distance changing on Hardest PositiveTransferre Positive **□** Hard Example Mining with Replaceable **Fransferred** Sample. Negative Semi-hard Our method optimize the manner of the Negative pose-transferred sample usage, which replaces the inferior examples caused by pose variations.

Pose Variation Adaptation for Person Re-identification

Lei Zhang, Na Jiang, Yue Xu, Qishuai Diao, Zhong Zhou and Wei Wu State Key Lab of Virtual Reality Technology and Systems, Beihang University

Comparison of the generated images and real images on Market-1501.

Comparison with state-of-the-art person re-id methods on Market-1501 and **DukeMTMC-reID dataset.**

Method	Market-1501		DukeMTMC-reid	
	Rank-1	mAP	Rank-1	mAP
XQDA	-	-	30.8	17.0
DNS	55.4	299	_	_
IDE	72.5	46.0	65.2	45.0
TriNet	84.9	69.1	72.4	53.5
Part-aligned	91.7	79.6	84.4	69.3
VPM	93.0	80.8	83.6	72.6
Mance	93.1	82.3	84.9	71.8
LSRO	84.0	66.1	67.7	47.1
PT	87.7	68.9	78.5	56.9
PN-GAN	89.4	72.6	73.6	53.2
Camstyle	89.5	71.6	78.3	57.6
FD-GAN	90.5	77.7	80.0	64.5
DG-net	94.8	86	86.6	74.8
Baseline	94.1	85.7	86.2	75.9
Ours	95.7	88.0	89.9	78.2
Ours+rerank	96.1	94.5	92.0	89.3

Experiments