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Introduction

Fixation

However, classic computational methods to study and represent eye movements cannot
exploit the dynamic nature of eye movements as a result of aggregation and feature
engineering. They may also be stimuli-dependent, placing the restriction that eye movements
have to come from the same stimuli.
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Data Training

1000 Hz data sets are downsampled to 500 Hz.
Stimuli | Tasks | Subj. | Sample | Time(s)

position AE (AE,) velocity AE (AE,) | Learning Rate: 5e-4

Encoder TCN 128 filters x 8 layers | 256 filters x 8 layers Optimizer: Adam
Micro-scale Bottleneck 64-dim FC 64-dim FC Batch Size: 256 (pos), 128 (vel)
Macro-scale Bottleneck 64-dim FC 64-dim FC Epochs: 14 (pos), 25 (vel)

128 filters x 4 layers;
Decoder TCN 64 filters x 4 layers 128 x 8 layers Framework: PyTorch
Total Parameters 652,228 1,964,676 GPU: GTX 1070
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Afterwards, the representations will be evaluated on classification tasks
with a linear SVM.

Augmented by taking overlapping 2s windows.
Total samples after augmentation: 68,178

Results Classification Task AE, | AE,-250 | AE,-MLR | Model generalizes to an unseen dataset
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