${ }_{2}$ Hikvision Research Institute, China

Motivation

* We address a challenging problem: recognizing multiple text sequences from an image by pure end-to-end learning.
> Multiple text sequences recognition (MSR). Each image may contain multiple text sequences of different content, location and orientation.
> Pure end-to-end (PEE) learning. Each training image is annotated with only text transcripts.
* Most existing works cannot handle this problem. Some of them use both text transcripts and text locations in a non-end-to-end (NEE) or quasi-end-to-end (QEE) way. Some of them are PEE method but for single text sequence recognition problem.
* We develop a novel PEE method MSRA to solve the MSR problem, in which the model is trained with only sequence-level text transcripts.

* The evaluation of $\mathrm{P}(l \mid \boldsymbol{X})$ turns to solve the two-dimensional probability path \bar{l} search problem over \boldsymbol{X}.

$$
p(\mathbf{l} \mid \mathbf{X})=\sum_{\bar{l} \in \mathcal{B}^{-1}(\mathbf{1})} p(\bar{l} \mid \mathbf{X})=\sum_{\bar{l} \in \mathcal{B}^{-1}(\mathbf{l})} \prod_{t=0}^{|\bar{l}|-1} x_{\bar{l}_{t}}^{i_{t}, j_{t}}
$$

(a)

Fig 2. The illustration of the forward and backward algorithms matching the s position of l^{\prime} at $\bar{S}(i, j)$ The dark purple area represents the path search area of the forward algorithm, where the white paths \bar{l} from \bar{B} to $\overline{\bar{S}}$ are all solutions satisfying $\mathcal{B}(\bar{l})=l_{0}^{\prime} ; s$, . The yellow area represents the path

* Prefix sub-path search problem can be iteratively calculated with a dynamic programming algorithm

$$
\begin{aligned}
& \alpha_{i, j}(s) \stackrel{\text { def }}{=} \sum_{\bar{l} \in \mathcal{B}-1} \prod_{l^{\prime}} \prod_{t=0}^{\mid \bar{\lambda}-1} x_{\bar{l}_{t}}^{i_{t}, j_{t}} \quad \begin{array}{l}
\text { Define } \alpha_{i, j}(s) \text { as the probability } \\
\text { for } \bar{l} \text { matching } l^{\prime}
\end{array} \\
& \alpha_{i, j}(s)=\sigma\left(g\left(\alpha_{i, j-1}, s\right), g\left(\alpha_{i-1, j}, s\right)\right) \quad \lambda_{1}, \lambda_{2} \text { are the hyper-parameters of } \\
& \alpha_{i, j}(s)=\sigma\left(g\left(\alpha_{i, j-1}, s\right), g\left(\alpha_{i-1, j}, s\right)\right) \\
& \lambda_{1}, \lambda_{2} \text { are the hyper-parameters of } \\
& \text { linear function } \sigma \text {. } \\
& g\left(\alpha_{i, j}, s\right) \stackrel{\text { def }}{=}\left(\alpha_{i, j}(s)+\alpha_{i, j}(s-1)+\eta \alpha_{i, j}(s-2)\right) x_{l l_{s}}^{i, j} \\
& \eta=\left\{\begin{array}{lll}
0 & \text { if } \mathbf{l}_{s}^{\prime}=\text { blank or } \mathbf{l}_{s}^{\prime}=\mathbf{l}_{s-2}^{\prime}, & \text { The state transfer strategy: } \\
> & >\text { blank and any non-blank character }
\end{array}\right. \\
& \left\{\begin{array}{ll}
1 & \text { otherwise. }
\end{array} \quad>\right.\text { any pair of distinct non-blank characters } \\
& p(\mathbf{l} \mid \mathbf{X})=\alpha_{H^{\prime}, W^{\prime}}\left(\left|\mathbf{l}^{\prime}\right|-1\right)+\alpha_{H^{\prime}, W^{\prime}}\left(\left|\mathbf{l}^{\prime}\right|-2\right) \quad \text { Answer Representation }
\end{aligned}
$$

For representing the non-text areas, adding blanks to the beginning and the end and inserting blanks between each pair of neighboring characters of l to get l '.

* Objective Function

$$
O=-\sum_{(\mathbf{X}, \mathbf{Z}) \in \mathcal{S}} \ln p(\mathbf{Z} \mid \mathbf{X}) \quad \frac{\partial O}{\partial x_{k}^{i, j}}=-\frac{1}{x_{k}^{i, j} \sum_{t=1}^{n} p\left(l_{t} \mid \mathbf{X}\right)} \sum_{t=1}^{n} \sum_{s \in \operatorname{lab}(t, k)} \alpha_{i, j}(s) \beta_{i, j}(s)
$$

Similar to $\alpha_{i, j}(s), \beta_{i, j}(s)$ is defined as the probability for \bar{l} matching $l^{\prime} s:\left.\right|^{\prime} \mid-1$ at (i, j) but not relying on $x_{0}^{i_{0}, j_{0}}$ and calculated by the backward algorithm. The gradient of the objective function can be obtained based on them where $l a b(l, k)=\left\{s: l_{s}^{\prime}=k\right\}$

Experiments

* Evaluation metrics
$>$ NED(\%): the normalized edit distance.
> 5 (\%): the sequence recognition accurac
> 1A(\%): the image recognition accuracy

- Recognition results on MS-MNIST 3 . Sample of MS-MNIST[4].

* Recognition results on real application scenarios datasets

Fig 4. Samples of four more challenging datasets: (a) IDN, (b) BCN, (c) HV-MNIST, and (d) SET.

Fig 5. Decoding process demonstration on the the learnt maximum probability matrix of X and the matching paths for decoding text sequences in α space.

Conclusion

Our contribution can be summarized as below:

- A new taxonomy of text recognition methods: NEE, QEE, PEE;

A novel PEE method MSRA to solve MSR
> Build up several datasets and conduct extensive experiments on them;

