

Motivation

- ✤ We address a challenging problem: recognizing multiple text sequences from an image by pure end-to-end learning.
- > Multiple text sequences recognition (MSR). Each image may contain multiple text sequences of different content, location and orientation.
- > Pure end-to-end (PEE) learning. Each training image is annotated with only text transcripts.
- Most existing works cannot handle this problem. Some of them use both text transcripts and text locations in a non-end-to-end (NEE) or quasi-end-to-end (QEE) way. Some of them are PEE method but for single text sequence recognition problem.
- ✤ We develop a novel PEE method MSRA to solve the MSR problem, in which the model is trained with only sequence-level text transcripts.

Fig 1. Examples of the MSR problem. (a)-(d) are 4 types of multi-sequence scenarios. Each sequence is bounded by a green box with the arrow indicating text orientation.

Multiple Sequence Recognition Approach (MSRA)

 \clubsuit MSRA aims to transform a three-dimensional tensor X to a conditional probability distribution over multiple character sequences $P(\mathbf{Z}|\mathbf{X})$.

$$\mathbf{X} = \begin{pmatrix} x^{00} & x^{01} & \dots & x^{0W'} \\ x^{10} & x^{11} & \dots & x^{1W'} \\ \vdots & \vdots & \ddots & \vdots \\ x^{H'0} & x^{H'1} & \dots & x^{H'W'} \end{pmatrix}$$

Z is denoted as a set of text sequences l_i which is obtained by using the many-to-one \mathcal{B} -mapping strategy for path \overline{l} on the two-dimensional probability distribution X.

Recognizing Multiple Text Sequences from an Image by Pure End-To-End Learning Zhanzhan Cheng² Fan Bai¹ Zhenlong Xu¹ Shuigeng Zhou¹ Yi Niu² Shiliang Pu²

¹ School of Computer Science, Fudan University ² Hikvision Research Institute, China

The evaluation of P(l|X) turns to solve the two-dimensional probability path *l* search problem over *X*.

$$p(\mathbf{l}|\mathbf{X}) = \sum_{\bar{l} \in \mathcal{B}^{-1}(\mathbf{l})} p(\bar{l}|\mathbf{X}) = \overline{l} \in \mathcal{I}$$

Fig 2. The illustration of the forward and backward algorithms matching the s position of l' at $\overline{S}(i, j)$. The dark purple area represents the path search area of the forward algorithm, where the white paths \overline{l} from \overline{B} to \overline{S} are all solutions satisfying $\mathcal{B}(\overline{l}) = l'_{0:s}$. The yellow area represents the path search area of the backward algorithm, where the paths from \overline{S} to \overline{E} satisfying $\mathcal{B}(\overline{l}) = l'_{s:|l'|-1}$.

Prefix sub-path search problem can be iteratively calculated with a dynamic programming algorithm.

$$\begin{split} \alpha_{i,j}(s) &\stackrel{def}{=} \sum_{\bar{l} \in \mathcal{B}^{-1}(\mathbf{l}'_{0:s})} \prod_{t=0}^{|\bar{l}|-1} x_{\bar{l}_t}^{i_t,j_t} & \text{Define } \alpha_{i,j}(s) \text{ arc } for \ \bar{l} \text{ matching } l^{\bar{l}} \\ \alpha_{i,j}(s) &= \sigma(g(\alpha_{i,j-1},s),g(\alpha_{i-1,j},s)) & \lambda_1,\lambda_2 \text{ are the hy} \\ &= \lambda_1 g(\alpha_{i,j-1},s) + \lambda_2 g(\alpha_{i-1,j},s) & \text{linear function } d \\ g(\alpha_{i,j},s) \stackrel{def}{=} (\alpha_{i,j}(s) + \alpha_{i,j}(s-1) + \eta \alpha_{i,j}(s-2)) x_{l's}^{i,j} \\ \eta &= \begin{cases} 0 & \text{if } \mathbf{l}'_s = \text{blank or } \mathbf{l}'_s = \mathbf{l}'_{s-2}, \\ 1 & \text{otherwise.} & \text{blank and any no} \\ &> \text{any pair of disting } \\ \end{cases} \end{split}$$

For representing the non-text areas, adding blanks to the beginning and the end and inserting blanks between each pair of neighboring characters of l to get l'.

 $p(\mathbf{Z}|\mathbf{X}) \stackrel{def}{=} \frac{1}{N} \sum_{i=1}^{N} p(\mathbf{l}_i|\mathbf{X})$

as the probability $U'_{0:s}$ at (i, j).

yper-parameters of

fer strategy: on-blank character nct non-blank characters

Representation

Objective Function

 $O = - \sum \ln p(\mathbf{Z}|\mathbf{X})$ $(\mathbf{X}, \mathbf{Z}) \in \mathcal{S}$

Similar to $\alpha_{i,j}(s)$, $\beta_{i,j}(s)$ is defined as the probability for \overline{l} matching $l'_{s:|l'|-1}$ at (i,j) but not relying on $x_{\overline{l}_{0}}^{i_{0},j_{0}}$ and calculated by the backward algorithm. The gradient of the objective function can be obtained based on them where $lab(l,k) = \{s : l'_s = k\}$.

Experiments

Evaluation metrics

- \blacktriangleright NED(%): the normalized edit distance.
- > SA(%): the sequence recognition accuracy.
- \succ IA(%): the image recognition accuracy.

Recognition results on MS-MNIST datasets

	MSRA			Attention baseline			CTC baseline		
	NED	SA	IA	NED	SA	IA	NED	SA	IA
MS-MNIST[1]	0.65	91.23	91.23	0.90	89.03	89.03	0.78	89.60	89.60
MS-MNIST[2]	0.48	93.57	87.47	0.67	91.48	83.87	-	-	-
MS-MNIST[3]	0.74	90.19	73.23	1.25	87.52	67.27	-	-	-
MS-MNIST[4]	1.21	86.35	63.20	1.35	88.55	61.80	-	-	-
MS-MNIST[5]	1.82	77.69	27.93	88.69	0	0	-	-	-

Recognition results on real application scenarios datasets

Fig 5. Decoding process demonstration on the the learnt maximum probability matrix of X and the matching paths for decoding text sequences in α space.

Conclusion

Our contribution can be summarized as below: A new taxonomy of text recognition methods: NEE, QEE, PEE; > A novel PEE method MSRA to solve MSR;

$$\frac{\partial O}{\partial x_k^{i,j}} = -\frac{1}{x_k^{i,j} \sum_{t=1}^n p(\mathbf{l}_t | \mathbf{X})} \sum_{t=1}^n \sum_{s \in lab(\mathbf{l}_t,k)} \alpha_{i,j}(s) \beta_{i,j}(s)$$

Fig 3. Sample of MS-MNIST[4]

nionPay tellax	7 2 42 1 5 9 1 8	e, our paper is the first work that formally puts forward the concept of attention drift. Further
	(c)	(d)

Datasets	NED	SA	IA
IDN	0.59	97.59	90.39
BCN	0.12	98.12	96.23
HV-MNIST	1.87	90.99	82.73
SET	1.48	68.57	47.90

Fig 4. Samples of four more challenging datasets: (a) IDN, (b) BCN, (c) HV-MNIST, and (d) SET.

Build up several datasets and conduct extensive experiments on them;