

Attention-Oriented Action Recognition for Real-Time Human-Robot Interaction

Ziyang Song¹, Ziyi Yin¹, Zejian Yuan¹, Chong Zhang², Wanchao Chi², Yonggen Ling², Shenghao Zhang² ¹Xi'an Jiaotong University, Xi'an, China ²Tencent Robotics X, Shenzhen, China

Tencent 腾讯

Action-in-Interaction Dataset (AID)

Eval	uation	of	efficiency
			-

>	Evaluation of recogniton accuracy	LSTA effects				
		PAPNet	1.4M	112	96.00	
	action instances	OpenPose v2 [2]	11.6M	43	95.73	
	action instances	OpenPose v1 [2]	42.0M	15	96.70	
	10 categories 20 subjects 1031	CPN v2 [1]	27.0M	47	96.56	
	Simulating mobile robot's viewpoints	CPN v1 [1]	46.0M	33	97.31	
	RGB + Depth	model	parameters	fps	PCK@0.15	

2

model	cAP	AP_{trig}	P_{trig}	R_{trig}
MTLN [3]	75.30	78.41	78.46	79.39
JCR-RNN [4]	66.95	73.79	79.08	73.60
Beyond joints [5]	76.86	82.28	83.07	83.07
ST-GCN [6]	81.63	87.56	87.72	87.41
base-AGANet	81.90	89.55	90.61	88.74
AGANet	87.50	96.00	95.08	95.71

叶办小小小小小小小小 小 小 小 小 中 安 皮 皮

Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, "Cascaded pyramid network for multi-person pose estimation," in CVPR, 2018.
Z. Cao, G. Martinez, T. Simon, S.-E. Wei, and Y. Sheikh, "Openpose: Realtime multi-person 2d pose estimation using part affinity fields," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, "A new representation of skeleton sequences for 3d action recognition," in CVPR, 2017.
Y. Li, C. Lan, J. Xing, W. Zeng, C. Yuan, and J. Liu, "Online human action detection using joint classification -regression recurrent neural networks," in ECCV, 2016.
H. Wang, "Beyond joints: Learning representations from primitive geometries for skeleton-based action recognition and detection," IEEE Transactions on Image Processing, vol. 27, pp. 4382–4394, 2018.
S. Yan, Y. Xiong, and D. Lin, "Spatial temporal graph convolutional networks for skeleton-based action recognition," in AAAI, 2018.