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Idea

To use skeleton and appearance features to do action recognition, but use RGB video 
as the only input.

Main Contributions

• Propose a method to recognize actions from the predicted 3D pose and the 
appearance features generated by the pose estimation network

• Require less equipment, compared to the skeleton based action recognition

• Achieve state-of-the-art results on NTU RGB+D dataset
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Main components: 

1. Pose module 
2. Skeleton module 
3. Appearance  module
4. Aggregation module  
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Pose module
• It uses stacked hourglasses networks to estimate 2D heatmaps and then 

uses conv. features and heatmaps to estimate depths for each body joint.
• It takes RGB video as input and outputs 3D skeleton coordinates, conv. 

features and 2D joint heatmap.



Skeleton

motions

3*3*32

3*3*32

3*3*32

3*3*32

Tensor
Permutation

3*3*32

3*3*32

3*3*64

3*3*64

Pool
and
Sum

3*3*128 3*3*128
Flatten

1024 -> 60
frame diff

Skeleton module

• Skeletal data has the benefits of insensitive to 
illumination changes and cluttered background, 
and is more correlated to human actions.
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Change channel dimension 
from coordinates to joints



3*1*42
SE 

block
3*3*32 3*3*64 Pooling 3*3*128 3*3*256

1*1*44

3*3*42

FC
1024 -> 60

3*1*32

Image Feature

Kronecker Product

Appearance Based 

Action Recognition 

Network

Heatmap
Convs.

Feature

Appearance Module

Kronecker product 

To extract appearance 
features around joints

Appearance module

• It takes convolutional features and bodyjoint
heatmaps as the input to predict actions

SE block (Squeeze-and-Excitation):  
learn the weights of each channel.



Acc. : accuracy
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Aggregation module

• It takes the prediction result from skeleton module and appearance 
module to produce the final prediction.
• Element-wise summation
• Element-wise multiplication
• Concatenation

• uses convolution layers to extract fused features and predict the final 
classification result by fully connected layers.
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NTU RGB+D dataset
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