
Ø Assumption: Amino acid sequences contains enough 
information for PPI prediction.

Ø Protein-Protein Interaction (PPIs) prediction using 
variable-length amino acid sequences.

Ø Deep learning approaches (DPPI1, PIPR2) proposed 
but face following challenges:
§ Black-box models and less biologically 

interpretable
§ Computationally expensive

Ø Sequence encoder with sparse and structured 
regularization
§ Supports interpretability with sparse gates

§ Low computation cost 
§ Good prediction performance
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Model description

Step 1: Sequence Encoder with Bi-GRU

Ø Handles variable-length sequences.
Ø Given a sequence 𝐬 of length 𝐿 with amino acids 𝑎!, 𝑎", … , 𝑎# , 

embedding layer projects 𝑎$to vector representation 𝑥$:
𝑥$ = 𝐖%𝑎$

Ø Bidirectional GRU to learn sequential & contextualized 
representation of amino acids in the sequences.

ℎ$ = BiGRU 𝑥$ = [GRU 𝑥$ , GRU(𝑥$)]

Step 2: Sparsity Gating
Ø Not all amino acids are informative for interactions.
Ø Learn sparse mask to focus only on subsets of important amino acids.
Ø Convert ℎ$ to score 𝑝$:

𝑝$ = 𝐖" tanh 𝐖!ℎ$ + 𝐛! + 𝐛"

Step 4: Pairwise ranking loss
Ø Minimize the statistical distance between interacting proteins while maximizing the distance

for non-interacting proteins

Ø Wasserstein distance between Gaussian representation of sequences:
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Ø Employ square-exponential loss to learn from known interactions
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Results

Fig 1: Block diagram of the model

Table 4: Alignment of sparse mask with motifs

Fig 3: LSM8

Fig 4: SMD2

Fig 5: RPC11

Ø Does learned sparsity mask match biological knowledge?

Ø We propose interpretable deep framework, to model 
PPIs using variable length sequences that 
§ Provides interpretable sparsity masks.
§ is computationally efficient and scalable.
§ Makes accurate PPI predictions.
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Table 3: Study of model components on Yeast dataset

Ø Does sparsity gating mechanism improve the performance on 
interaction prediction?

Table 2: Comparison with the state-of-the-art models

Ø Our proposed model shows superior performance than state-of-the-
art methods.

Ø Proteins rarely act alone as their functions 
tend to be regulated.

ØNumerous proteins organized by their 
interactions forms molecular machines that 
carries out biological and molecular processes. 

Ø Study of these interactions helps to:
o Understand biological phenomenon
o Provides insights about molecular 

etiology of diseases
o Discover putative drug targets 

Motivation

Overview

• Protein sequences from EMBL-EBI Reference 
Proteome

• Interactions from BioGRID database

Datasets References

Acknowledgements
Dataset No. of 

proteins
No. of 

positive pairs
No. of 

negative pairs
Yeast 3651 50344 50376
Human 7028 73624 73628

Table 1: Statistics of interactions dataset from BioGRID database

Step 3: Gaussian representation

Ø Proteins interacts with various proteins having diverse functions and different sequence
patterns.

Ø Such diverse information can be reflected in the uncertainty of the representation.
Ø Protein sequence 𝐬 is encoded to 𝑑-dimensional Gaussian distribution 𝒩(𝜇, Σ).
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Fig 6: Training time comparison

Ø Average training time comparison
• Encode all sequences to their representation 

and optimize based on known interactions

• Other methods (DPPI, PIPR) encodes pairs 
of sequences and is not scalable  to large 
number of interactions.

Fig 2: Protein interaction


