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Motivation

» Proteins rarely act alone as their functions
tend to be regulated.

» Numerous proteins organized by their
interactions forms molecular machines that
carries out biological and molecular processes.

» Study of these interactions helps to:
o Understand biological phenomenon

o Provides insights about molecular
etiology of diseases

o Discover putative drug targets

Overview

» Assumption: Amino acid sequences contains enough
information for PPI prediction.

» Protein-Protein Interaction (PPIs) prediction using
variable-length amino acid sequences.

> Deep learning approaches (DPPI!, PIPR?) proposed
but face following challenges:
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é = Black-box models and less biologically :
i interpretable :

‘= Computationally expensive

» Sequence encoder with sparse and structured
regularization

= Supports interpretability with sparse gates :
E " Low computation cost :

. ® (ood prediction performance

Datasets

* Protein sequences from EMBL-EBI Reference
Proteome
 Interactions from BioGRID database

Dataset No. of No. of No. of
proteins positive pairs negative pairs

Yeast 3651 50344 50376

Human 7028 73624 73628

Table 1: Statistics of interactions dataset from BioGRID database

Model description

PPIs using variable length sequences that
» Provides interpretable sparsity masks.

" is computationally efficient and scalable.
» Makes accurate PPI predictions.

Step 4:
Cost Function

Step 3:
Gaussian
distributions
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representation of amino acids in the sequences.

> Bidirectional GRU to learn sequential & contextualized
: h, = BiGRU(x,) = [GRU(x;), GRU(x,)]

X|] = Weal

embedding layer projects a;to vector representation x;:

Sparse
gating

Step 1:
Sequence
encoder
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Fig 1: Block diagram of the model

;> Not all amino acids are informative for interactions.

> Learn sparse mask to focus only on subsets of important amino acids.

» Convert h; to score p;:

D = WZ (tanh(wlhl + bl)) + b2
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Fig 2: Protein interaction
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EStep 3: Gaussian representation

patterns.

% Proteins interacts with various proteins having diverse functions and different sequence

> Such diverse information can be reflected in the uncertainty of the representation.

> Protein sequence s is encoded to d-dimensional Gaussian distribution N (y, X).

> Minimize the statistical distance between interacting proteins while maximizing the distance

for non-interacting proteins

. » Wasserstein distance between (Gaussian representation of sequences:
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» Employ square-exponential loss to learn from known interactions

SIIRC

E;; = Wasserstein distance (N(Mi,Zi),N(,uj,Zj)) = |w — y;
: i (i, ))eY* (i, k)eEY™

exp(—Eix))
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Results

art methods.

» Our proposed model shows superior performance than state-of-the- :

interaction prediction?

Table 2: Comparison with the state-of-the-art models

| |
; .
; .
; .
g .
| |
I Yeast Human I
i Method Data AUROC AP AUROC AP @
| |
; DPPI [7] Profiles  0.8914+0.004  0.857+0.007  0.870+0.004  0.83540.005 ;
| PIPR [8] sequences  0.90940.003  0.91240.004  0.87840.002  0.882+0.003 ;
o R—an—kil_lg_ "~ Profiles  0.882+0.003  0.888+0.002  0.884+0.003  0.893+0.004 !
| Our method (sparsemax) Sequences  0.90140.002  0.90440.002  0.88140.002  0.8894-0.001 |
| p Random Forest | _Profiles 09080002 0.913:+£0.003  0.891 +0.005*  0.896-0.005* |
o oM O™ Sequences_0.92410.002*  0.92510.001* _ 0.887+0.002 _ 0.89440.001 !
; Ranking Profiles ~ 0.88230.006 _ 0.885+0.006 0.87330.09 0.881+0.01 ;
; Our method (fasedmax) Sequences  0.8984-0.001  0.90040.002  0.87440.002  0.8834-0.001 ,
; Random Forest _Profiles  0906+0.004 091240005 087240015  0.877+0.015 .
g Sequences  0.91940.003  0.92140.002  0.88140.002  0.8864-0.001 ;
| |
| |

Model configuration AUROC

AP

No gating 0.880+0.001  0.875+0.003
0.881+0.001 0.877+0.001
Point + RF Fusedmax  0.909+0.001 0.91240.002
Sparsemax  0.913+£0.001 0.916=0.002

~ Softmax  0.8824+0.001 0.879+0.002
Gaussian + RF  Fusedmax  0.919+0.003 0.92140.001
Sparsemax  0.924+0.002 0.92510.001

i Softmax

Selected Alignment

Table 3: Study of model components on Yeast dataset
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Dataset with motifs (%)

59.05
65.63

amino acids (%)

19.24
23.33

Yeast
Human
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Table 4: Alignment of sparse mask with motifs
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» Average training time comparison
* Encode all sequences to their representation

and optimize based on known interactions

* Other methods (DPPI, PIPR) encodes pairs
of sequences and is not scalable to large
number of interactions.
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Fig 6: Training time comparison
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