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1. Introduction

A common approach in multi-task learning is to encourage the tasks to
share a low dimensional representation by using trace norm regularization.
In this paper, we extend this approach by allowing the tasks to partition
into different groups, within which trace norm regularization is separately
applied. We propose a smooth continuous bilevel optimization framework to
simultaneously identify groups of related tasks and learn a low dimensional
representation within each group.

2. Groupwise Trace Norm Regularization

Goal: Given a dataset {ytrn
t , X

trn
t }Tt=1 assumed organized into L groups of

related tasks {G1, . . . ,GL}, find a regressor W such that
• (linear regression) for every t ∈ {1, . . . , T}, yt ≈ Xtwt
• (low dimension) for every l ∈ {1, . . . , L}, the restriction WGl is low rank

Optimization problem: Given {ytrn
t , X

trn
t }Tt=1 and a partition G =

{G1, . . . ,GL} of the T tasks in L groups, find

Ŵ ∈ argmin
W∈RP×T

T∑
t=1

1
2
‖yt −Xtwt‖2 + λ

L∑
l=1
‖WGl‖tr,

for some regularization parameter λ > 0

Issue: In many applications, G might not be known a priori. Finding G
through an exhaustive search is a challenging combinatorial problem since
there are (LT/L!) possible partitions

3. Proposed Setting

Parametrization of the Groups: Let θ = [θ1 · · · θL] ∈ [0, 1]T×L be
the hyperparameter matrix encoding at most L groups, meaning that θt,l = 1
if the t-th task belongs to Gl, and 0 otherwise
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Figure: The oracle parameter matrix W ∗ is made of 3 groups of related tasks : 1→ 10,
1→ 20 and 21→ 30.

Data: Training sets {ytrn
t , X

trn
t }Tt=1 and validation sets {yval

t , X
val
t }Tt=1 each

one sample from a groupwise low-rank linear model yt = Xtw
∗
t + εt, where

εt ∼ N (0P , σ2
1P )

Main Goal

Estimate θ∗ from {ytrn
t , X

trn
t }Tt=1 and {yval

t , X
val
t }Tt=1

4. Exact Bilevel Problem

Upper-level Problem:

minimize
[θ1···θL]∈Θ

U(θ) :=
T∑
t=1

1
2
‖yval

t −Xval
t ŵt(θ)‖2

where Ŵ (θ) =
[
ŵ1(θ) · · · ŵT (θ)

]
solves

Lower-level Problem:

minimize
W∈RP×T

L(W, θ) :=
( T∑
t=1

1
2
‖ytrn

t −X trn
t wt‖2 + ε

2
‖wt‖2

)
︸ ︷︷ ︸

f (W ) smooth

+λ
L∑
l=1
‖θl �W‖tr︸ ︷︷ ︸

g(AθW ) nonsmooth

Difficulties:
• L is nonsmooth (since g is nonsmooth)
• U is nonsmooth (since Ŵ is nonsmooth)
• Ŵ (θ) is not available in closed form

5. Approximate Bilevel Problem

Upper-level Problem:

minimize
[θ1···θL]∈Θ

UK(θ) :=
T∑
t=1

1
2
‖yval

t −Xval
t w

(K)
t (θ)‖2

where W (K)(θ) =
[
w

(K)
1 (θ) · · ·w(K)

T (θ)
]
is given by

Dual Algorithm:
U (0)(θ) arbitrarily chosen
for k = 0, 1, . . . , K − 1⌊
U (k+1)(θ) = A(U (k)(θ), θ) dual update
W (K)(θ) = B(U (K)(θ), θ) primal dual relationship

Goals: Find A,B such that
• UK is smooth
•W (K)(θ)→ Ŵ (θ)
•minUK → minU and argminUK → argminU

When does the Approximate Bilevel Problem Converge to the Exact One?

Theorem 1: Suppose that Θ is a compact nonempty subset of RT×L
+ . If the iterates {W (K)(θ)}K∈N converge to Ŵ (θ) uniformly on Θ as K → +∞, then

inf
θ∈Θ
UK(θ) −→

K→+∞
inf
θ∈Θ
U(θ) and argmin

θ∈Θ
UK(θ) −→

K→+∞
argmin
θ∈Θ

U(θ)

6. Algorithmic Solution

We implement a forward-backward algorithm with Bregman distance [1, 2]
for solving the dual problem:

minimize
U∈(RP×T )L

f ∗(−A>θ U)︸ ︷︷ ︸
smooth

+ g∗(U)︸ ︷︷ ︸
nonsmooth

Mapping A: smooth for specific Legendre function Φ

U (k+1)(θ) = proxΦ
γg∗

(
∇Φ(U (k)(θ)) + γAθ∇f ∗(−A>θ U (k)(θ))

)
= argmin

U∈(RP×T )L
γg∗(U) + Φ(U)−

〈
U,∇Φ(U (k)(θ)) + γAθ∇f ∗(−A>θ U (k)(θ))

〉

Mapping B: W (K)(θ) = ∇f ∗(−A>θ U (K)(θ)) smooth X

Uniform Convergence

Theorem 2: For every θ ∈ Θ, ‖w(K)(θ)− ŵ(θ)‖2 ≤ Constλ
εK

Overall algorithm: If A and B are smooth, then so does UK. Hence,
one can implement the following algorithm

(∀q ∈ {0, . . . , Q− 1}), θ(q+1) = PΘ
(
θ(q) − ν∇UK(θ(q))

)
The key novelty of our approach is to devise an efficient algorithm to compute
∇UK(θ(q)) by exploiting recent results on the derivative of generalized matrix
functions [3].

7. Choice of Legendre function

Separable Legendre function Since g is the sum of L trace norms, then g∗
is separable and equal to the indicator function of Bsp(λ)L, where Bsp(λ) is
the spectral ball of RP×T with radius λ. Hence, we look for a function Φ
separable as well,

Φ : V 7→
L∑
l=1

φ(Vl) and proxΦ
γıBsp(λ)L

: V 7→
(
proxφγıBsp(λ)

(Vl)
)
l∈{1,...,L}

In order to find a smooth proximity function, we look for a Legendre function
φ such that domφ = Bsp(λ).

Legendre function acting on the singular values: Given the
singular value decomposition Vl = Adiag[σ]B> with σ = (σ1, . . . , σr), we
define

φ : Vl 7→
r∑
i=1

κ(σi) and proxφγıBsp(λ)
: Vl 7→ Adiag[κ′(σi)]B>

8. Synthetic Experiments

Setting: T = 30 tasks arranged in L = 3 groups of 10 tasks each. For each
task, we have N = 10 noisy observations (σ2 = 0.1) and P = 20 features.
We do not assume that the true number of groups is known. Instead, we
let the methods find at most 6 groups. The regularization parameter λ is
selected on a grid to minimize the validation error
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Figure: Mean group covariance matrix θ>θ on the synthetic experiment. Only the proposed
method manages to clearly estimate the three groups of tasks.

9. Real Data Experiments

Animals (accuracy) Parkinson (mse ×10−1)
Proposed BiGMTL 84.96% (± 0.90) 4.98 (±0.20)
STL [4] 83.55% (± 0.79) 5.01 (±0.15)
Whom [5] 84.72% (± 0.65) 5.03 (±0.16)
STL2 [6] 84.06% (± 0.82) 5.11 (±0.12)
RMTL [7] 74.04% (± 4.28) 5.08 (±0.19)
GO-MTL [8] 80.51% (± 0.73) 5.95 (±0.17)
MeTaG [9] 84.35% (± 0.80) 5.03 (±0.18)

Table: Results on benchmark data sets. We report the average over multiple splits and the
standard deviation in parenthesis.

Experimental results indicate the advantage of working with a variable
number of groups over standard trace norm regularization (STL, STL2)
and previous state-of-the-art approaches.
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