Combining Similarity and Adversarial Learning to Generate Visual Explanation: Application to Medical Image Classification

Application to Medical Image Classification

universite

CentraleSupélec

Martin Charachon¹², Céline Hudelot², Paul-Henry Cournède², Camille Ruppli¹, Roberto Ardon¹

¹Incepto Medical

²Université Paris-Saclay, CentraleSupélec, MICS

Introduction

Problem: Explain decision of black-box classifiers

Objectives:

What are the **discriminative regions** in the image for the classifier? Are they **interpretable** for humans (clinicians)?

Prior Work

- → Saliency maps [1], Activation maps based [2]
- → Perturbation-based [3, 4, 5]
- [1] K. Simonyan, A. Vedaldi, and A. Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps," in ICLR, 2014
- [2] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization," in ICCV, 2017
- [3] R. C. Fong and A. Vedaldi, "Interpretable explanations of black boxes by meaningful perturbation," in ICCV, 2017
 [4] P. Dabkowski, and Y. Gal. "Real time image saliency for black box classifiers," in NIPS, 2017
- 4] P. Dabkowski and Y. Gai, Real time image saliency for black box classifiers, in NIPS, 2017

Contributions

New definition of **visual explanation** through **adversarial** example generation

New Optimization workflow combining the **training** of an **adversarial generator** and a **similar generator**

New **regularization** methods **improving** several explanation methods in terms of **weak localization**

"Naive" Method

Visual explanation: $E_{f_a}(x) = |x - g_a(x)|$

Issues:

- \rightarrow Different space χ and χ
- → Reconstruction errors

Proposed Method

Approach: Generate an adversarial example $g_a(x) \subseteq \chi$ Project x in space $\chi \rightarrow g_a(x)$

Visual explanation:

$$E_{f_c}(x) = |g_s(x) - g_a(x)|$$

Joint Optimization Problem

Optimization function

framework

Optimization

Regularization:

N random geometric transformations ψ_i at test time

$$\overline{E}_{f_{e}}(x) = \frac{1}{N+1} \left[E_{f_{e}}(x) + \sum_{i=1}^{N} \psi_{i}^{-1} \left(E_{f_{e}}(\psi_{i}(x)) \right) \right]$$

Experimental Results

Adversarial and Similar generation

Great similarity: x, $g_s(x)$ and $g_a(x)$

reconstruction errors between $g_s(x)$ and $g_a(x)$

$\cup M_{Ei}$		ı	
STIMATED AUC SCORES ME - COMPARISON TO S AND WITH	STATE OF THE A		
Explanation method	Total AUC	Partial AUC	Time (s
Gradient [1]	0.287	0.189	2.04
	0.374	0.274	2.83
GradCAM [2]	0.326	0.235	0.78
	0.397	0.302	5.09
BBMP [3]	0.326	0.229	17.14
Mask Generator [4]	0.327	0.226	0.09
	0.404	0.308	0.68
"Naive"	0.238	0.145	0.10
	0.325	0.232	0.75
	0.339	0.256	0.05

 $AUC_{Loc} = \sum P_i(R_i - R_{i-1})$

