

Wavelet Attention Embedding Networks for Video Super-Resolution

Young-Ju Choi¹, Young-Woon Lee², and Byung-Gyu Kim*¹

MOTIVATION

- ✓ In video super-resolution (VSR), the frames contain different type of information including low and high-frequency components.
- However, the previous methods handled the features identically or simply combined the edge map so the high resolution (HR) output image lack meaningful information.

Introduction

- The compensated feature generated by **pixel-based frame alignment** can involve some discontinuous regions.
- This inaccurate motion alignment and compensation cause the HR output containing visual artifacts.

APPROACH

- ✓ In this paper, we propose the wavelet attention embedding networks (WAEN) consisting of two embedding modules to jointly exploit the spatio-temporal dependencies for VSR.
- One module is the wavelet embedding network (WENet) for spatial features, and the other one is the attention embedding network (AENet) for temporal features.
- Our WAEN can enhance low-frequency features and recover highfrequency details by utilizing appropriate spatial and temporal information.

OVERVIEW LR t LR input (a) Parallel structure (b) Serial structure

Fig. 1. The network architecture of the proposed WAEN.

- Given 2N + 1 consecutive low resolution (LR) input frames LR_{input} , our WAEN has a purpose of estimating a HR center frame SR_t .
- We designed two types of pipeline structure (parallel and serial).
- In the parallel structure, input frames are fed to both WENet and AENet.
- In the **serial structure**, input frames are fed to only WENet, and the output features of WENet become the input of AENet.
- The output features after the embedding network pass through a **reconstruction** (with residual blocks) and up-sampling (with depth-to-space transformation) module.

Methodology

Fig. 2. The structural details of wavelet embedding net

- The WENet is operated as a spatial feature extractor of individual low and highfrequency information based on 2-D Haar discrete wavelet transform (DWT).
- Through separating each given feature to four sub-band wavelet feature by DWT, more precise and sharp features can be extracted.

ATTENTION EMBEDDING NET

Fig. 3. The structural details of attention embedding net.

- Our AENet is based on the temporal and spatial attention (TSA) module in [6].
- In neighboring frames with different degrees of motion information, there is a high probability that necessary information for the reference frame exists.
- By utilizing the relationship between frames, discontinuities in output feature can be reduced rather than extracting explicit or implicit motion feature.

Datasets and Implementation Details

- We use Vimeo-90K dataset for training and Vid4 dataset for testing.
- For evaluation, we use **peak signal-to-noise ratio (PSNR)**.
- The network takes 7 frames (3 channel patches of 64×64 for training). \checkmark
- The scale of SR was set to 4.

- We used Charbonnier penalty function for loss function.
- ✓ We trained with setting the size of mini-batch to 20.
- We used Adam optimizer.
- We initially set learning rate to 4×10^{-4} .

Quantitative Comparison Results

Table 1. Quantitative comparison on Vid4 for 4× video SR on Y (luminance) channel Red and Blue indicates the best and the second best performance, respectively

Method Params.							
	Bicubic	SOF-VSR [21] 1.0M	WDVR [8] 1.2M	FRVSR [3] 5.1M	WAEN P (Ours) 9.5M	WAEN S (Ours) 9.6M	
Calendar	20.45	21.56	23.47	23.02	23.63	23.81	
City	25.22	26.24	27.36	27.93	27.48	27.61	
Foliage	23.57	24.65	25.84	26.26	25.89	26.00	
Walk	26.27	28.41	30.11	29.61	30.16	30.37	
Average	23.88	25.21 (26.00)	26.69 (26.62)	26.71 (26.69)	26.79	26.95	

Table 2. Quantitative comparison on Vid4 for 4× video SR on RGB channel.

Method Params.	Bicubic -	SOF-VSR [21] 1.0M	WDVR [8] 1.2M	FRVSR [3] 5.1M	WAEN P (Ours) 9.5M	WAEN S (Ours 9.6M
Calendar	18.96	19.97	21.75	21.37	21.87	22.04
City	23.75	24.76	25.84	26.39	25.96	26.08
Foliage	22.21	23.25	24.44	24.84	24.47	24.59
Walk	24.94	27.07	28.74	28.24	28.79	28.99
Average	22.47	23.76	25.19	25.21	25.27	25.42

Table 3. Adopted modules in our WAEN on Vid4 for 4x video SR.

Method Params.	EDVR TSA [6] 5.0M	WENet 8.5M	WAEN P (Ours) 9.5M	WAEN S (Ours) 9.6M
WENet	X	V	V	V
AENet	V	×	X	V
Reconstruction	V	V	V	V
Y	26.75	26.67	26.79	26.95
RGB	25.24	25.15	25.27	25.42

- ✓ Our WAEN S shows the best performance and WAEN P is in second place on average in both Y and RGB channels.
- From the results about adopted modules, we can explain that combination of two feature extractors produces better performance than using a single module.

Conclusions

- The WAEN can derive the meaningful feature for more accurate HR reconstruction by applying a powerful spatio-temporal structure. We compared the proposed models with other recent state-of-the-art VSR approaches and the results demonstrated that our proposed method could obtain better quality of SR.

(b) Bicubic. (c) SOF-VSR [21]. (d) WDVR [8]. (e) FRVSR [3]. (f) WAEN P. (a) The original.

Oualitative Comparison Results

Fig. 4. Visual results on Vid4 for 4× video SR. Zoom in to see better visualization.