Graph Approximations to Geodesics on Metric Graphs

MOTIVATION

Proximity graphs are often used to approximate geodesics

Used for various dimensionality reduction methods

- Laplacian Eigenmaps
- Locally Linear Embedding
- ISOMAP

- Maximum Variance Unfolding
- Local Tangent Space Alignment
- ...

Used as intermediate representations for topological inference [1, 2, 3]

THE PROBLEM

Existing results for approximating geodesic distances [4]

- Only apply to smooth submanifolds of \mathbb{R}^{n}
- No singularities (such as bifurcations) allowed
- Conditions under which approximated and true geodesic distances are close are stringent
- Must approximate all local patterns well
- However, global patterns may be approximated well without local patterns

REFERENCES

OUR APPROACH

New geometric characteristics for metric graphs

```
Definition 3. Given a connected metric graph \(M\). For any \(\epsilon>0\) we define the branch separation \(s_{\epsilon}(M) \in \mathbb{R}^{+} \cup\{\infty\}\) of
\(M\) at resolution \(1 / \epsilon\) as
\(s_{\epsilon}(M):=\sup \left\{s \in \mathbb{R}:\|x-y\|<s \Longrightarrow d_{M}(x, y) \leq \epsilon\right\}\)
Definition 4. Given a connected metric graph M. For any \(0 \leq \epsilon^{\prime}<\epsilon\) we define the linearity of \(M\) between resolution \(1 / \epsilon\) and \(1 / \epsilon^{\prime} \in \mathbb{R}^{+} \cup\{\infty\}\) as
\(\lambda_{\epsilon^{\prime}, \epsilon}(M):=\sup \left\{\lambda \in \mathbb{R}: \epsilon^{\prime} \leq d_{M}(x, y) \leq \epsilon \Longrightarrow\right.\) \(\left.\lambda d_{M}(x, y) \leq\|x-y\|\right\}\)
```

- More flexibility (account for data at hand)
- Is also necessary to extend to singularities (proof in paper)
Theorem 3. Let M be a connected metric graph in \mathbb{R}^{d} and
let X be a finite set of data points in M. Suppose a graph
$G=(X, E)$ is given, defining the following three thresholds:

1) $\|x-y\| \geq \epsilon^{\prime}$ for all $\{x, y\} \in E$,
2) $\|x-y\|<s_{\epsilon}(M)$ for all $\{x, y\} \in E$, with $\epsilon>0$,
3) for all $x, y \in X$ with $\|x-y\| \leq \tau$, we have $\{x, y\} \in E$.
If for $0<4 \delta<\tau$, X satisfies the δ-sampling condition, i.e.,
for every $m \in M$ there is $x \in X$ with $d_{M}(m, x) \leq \delta$, then
for all $x, y \in M$
$\lambda_{\epsilon, \epsilon^{\prime}}(M) d_{M}(x, y) \leq d_{G}(x, y) \leq(1+4 \delta / \tau) d_{M}(x, y)$. (1)

[1] R. Vandaele et al, "Mining Topological Structure in Graphs through Forest
Representations," Journal of Machine Learning Research, 21(215):1-68, 2020
[2] R. Vandaele. "Topological Data Analysis of Metric Graphs for Evaluating Cell Trajectory Data Representations," Master's thesis, Ghent University, 2020.
[3] R. Vandaele. "Topological Inference in Graphs and Images," Doctoral thesis, Ghent University, 2020
[4] M. Bernstein et al, "Graph approximations to geodesics on embedded manifolds," 2000
[^0]
[^0]: Contact
 Robin.Vandaele@UGent.be https:///users.ugent.be/~rvdaele
 f Universiteit Gent

 - @ugent
 in Ghent University

