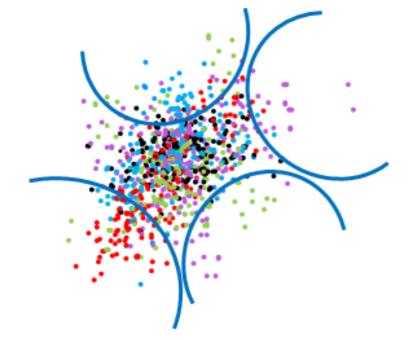
GuCNet: A Guided Clustering-based Network for Improved Classification

Ushasi Chaudhuri, Syomantak Chaudhuri, Subhasis Chaudhuri

Indian Institute of Technology Bombay, India.

Introduction to Problem

- **Task:** Classification problem in vision data.
- Aim: Need to extract relevant features from patterns & project it onto an embedding space
- Ensure: Representations of each class of patterns are uniquely distinguishable.
- Problem: Semantic classification of challenging and highly-cluttered data is difficult.



Results - RSSCN aerial scene dataset

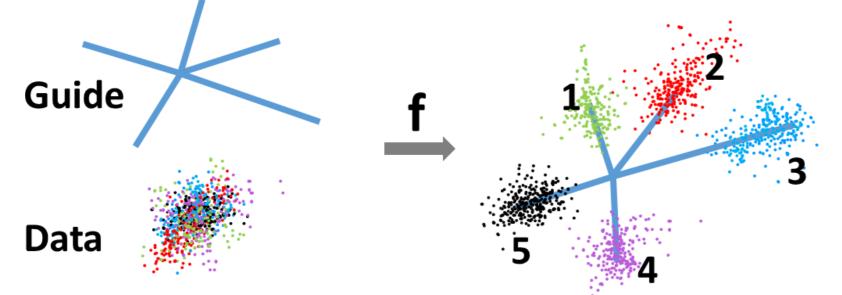
Classification performance of the proposed GuCNet architecture on RSSCN dataset. Here baseline for guide data (MNIST) is 99.80%.

Model	Accuracy(%)	
VRGSIR	81.00%	\mathcal{X} : MNIST
AlexNet	88.80%	
CaffeNet	88.60%	
GoogleNet	79.80%	
VGG-M	87.30%	
VGG-VD16	85.60%	\mathcal{Y} : RSCCN
Conv5-MSP5-FV	95.40%	

Guided Clustering

Many well-separable datasets are available.

- Can we leverage the classifiability of any existing well separable dataset?
- **Guide data** (\mathcal{X}) : A well separable data.
- **Cluttered data (** \mathcal{Y} **):** The cluttered dataset, which is to be classified.
- Embed class-wise features of the cluttered data to the distinct clusters of the guide data, to make them more separable.
- ► Therefore, guided-clustering.

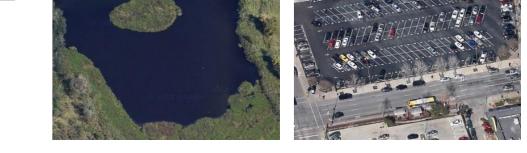


Texture-based Guiding

 Baseline
 88.39%

 GuCNet (Prototype)
 97.36%

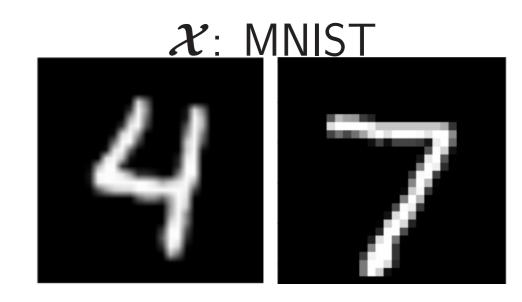
 GuCNet (Texture)
 99.11%



Results - LSUN Outdoor scene dataset

Classification performance on LSUN dataset with the same guide data.

Model	Accuracy(%)
Vanilla GAN	70.50%
Labeled-samples	77.00%
Hybrid GAN	83.20%
Normal BN-Inception	90.40%
Deeper BN-Inception	90.90%
SJTU-ReadSense	90.40%
SIAT MMLAB	91.60%
Baseline	83.75%
GuCNet (Prototype)	95.03%
GuCNet (Texture)	94.86%



Results - TU-Berlin sketch dataset

Performance comparison on TU-Berlin dataset for classification accuracy.

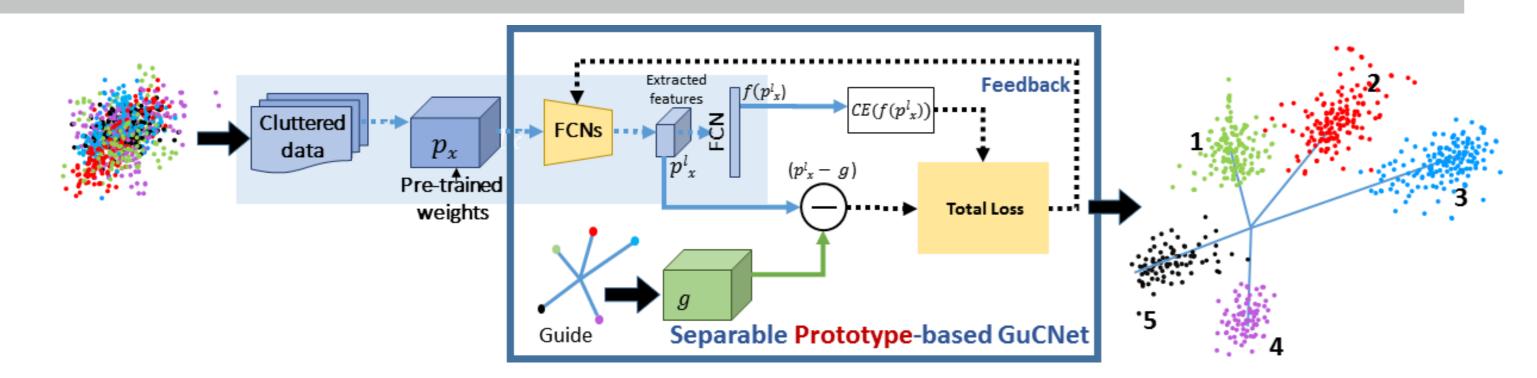


A well-separable data acts as a texture data.

We refer to the output of the convoluted features from \mathcal{X} and \mathcal{Y} as p'_x and p'_x , respectively.

- Extract initial level features from both data using a pre-trained network.
- ► Feed samples of class-*c* of both *X* and *Y* together as the same class label in the unified space.
- ► Minimize cross-entropy loss: $\mathcal{L}_{CE} = CE(p'_x, p'_y)$.

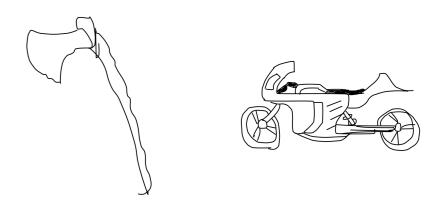
Prototype-based Guiding



Here baseline accuracy for guide data is 84.54%.

THEFE DASETTIE ACCURACY	I guiue uata is
Model	Accuracy(%)
AlexNet-SVM	67.10%
AlexNet-Sketch	68.60%
Sketch-A-Net SC	72.20%
Sketch-A-Net-Hybrid	73.10%
ResNet18-Hybrid	73.80%
Alexnet-FC-GRU	79.95%
Zhang <i>et. al.</i>	82.95%
Baseline	69.90%
GuCNet (Prototype) 86.63%
GuCNet (Texture)	89.26%

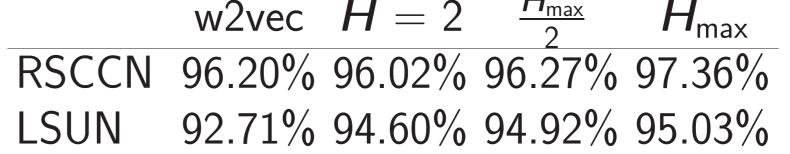
 \mathcal{Y} : TU-Berlin Sketches



Some Interesting Ablation Study:

Effect of different types of co-binning of texture classes from guide set.				
Dataset (TU-Berlin)	Accuracy(%)			
Same class binning	89.26%			
Dissimilar class binning	90.05%			
Effect of separability of prototypes in terms of Hamming distance (H) .				
Dataset Separation of prototypes				
	Н			

- If a well-separable data of *C*-class unavailable, we can also use a prototype-based guided clustering.
- Extract initial level features from cluttered data using a pre-trained network.
- ► Choose K ($K \ge C$) dimensional vectors (called *prototypes* g).
- ► Matching loss: $(\mathcal{L}_{ml} = | p'_x g |)$ to bring the dataset closer to the prototype vectors.
- Minimize $\mathcal{L}_{ml} = |p'_x g| + CE(p'_x, p'_y).$



Conclusions

- Propose a simple guided clustering framework to get high performance in classification.
- Leverage the ease of separability of a guide dataset to improve the separability of a cluttered dataset.
- Pushes the embeddings of the data instances far apart in the semantic feature space while making the embedding space further discriminative.
- Established its efficacy on three challenging datasets and outperformed the state-of-the-art performance.