MCFL: Multi-label Contrastive Focal Loss for Pedestrian Attribute Recognition ICPR₂₀ Xiaoqiang Zheng, Zhenxia Yu, Lin Chen*, Fan Zhu, Shilog Wang Chengdu University of Information Technology, China talv 10 | 15 Januarv 2021 Chongging Institute of Green and Intelligent Technology, Chinese Academy of Science, China

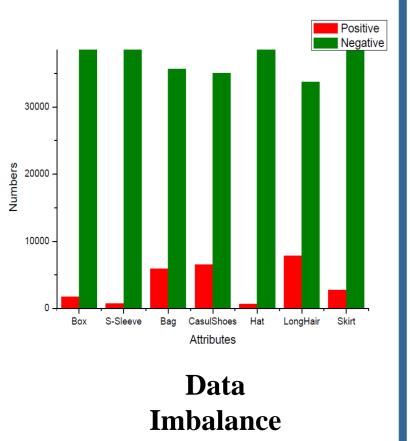
Abstract

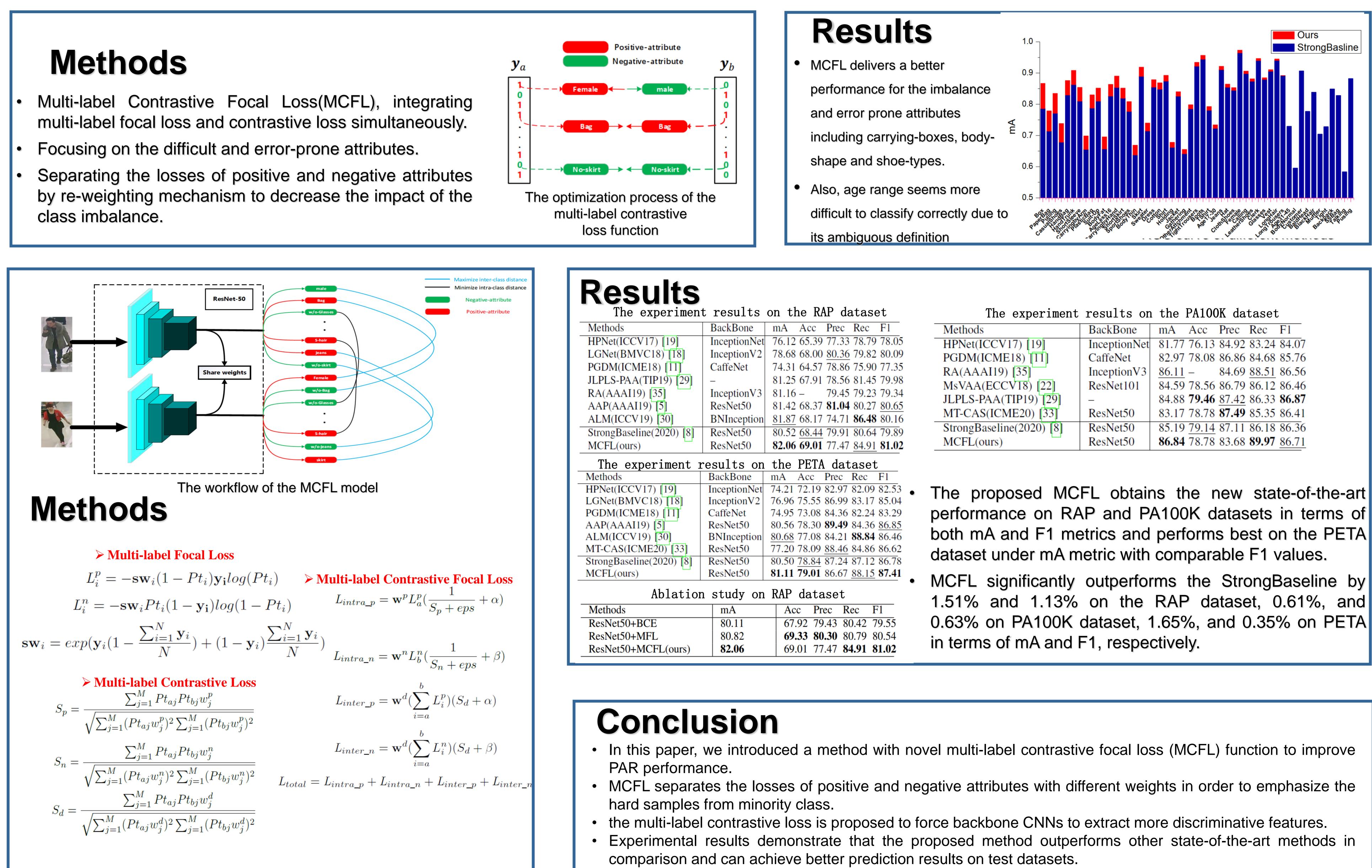
- called Multi-label function New OSS Contrastive Focal Loss (MCFL)
- minority Emphasizing the hard and attributes by using a separated reweighting mechanism imbalance
- Enlarge the gaps between the intra-class of multi-label attributes, to extract more subtle discriminative features
- MCFL with the ResNet-50 backbone is able outperform other state-of-the-art approaches in term of mean accuracy

Introduction

The main task of Pedestrian Attribute Recognition (PAR) is to give a series of semantic pedestrian attributes, such as gender, age, clothing style, or other appearance attributes, to help to locate specific target

Main Challenge:


- Low quality, various in-camera viewing angle, illumination, background, or human poses
- PAR is a multi-label learning as it needs to describe dozens of attributes for a person simultaneously
- Fine-grained attributes (such as muffler and glass) are hard to recognize at a far distance.
- The extremely imbalanced distribution and lack of sufficient training data are also limited to the PAR performance


Pose Variation

Occlusion

- class imbalance.

Methods	BackBone	mA .	Acc	Prec	Rec	F1
HPNet(ICCV17) [19]	InceptionNet	81.77 (76.13	84.92	83.24	84.07
PGDM(ICME18)	CaffeNet	82.97	78.08	86.86	84.68	85.76
RA(AAAI19) [35]	InceptionV3	86.11 -	_	84.69	88.51	86.56
MsVAA(ECCV18) [22]	ResNet101	84.59 1	78.56	86.79	86.12	86.46
JLPLS-PAA(TIP19) [29]	_	84.88 '	79.46	87.42	86.33	86.87
MT-CAS(ICME20) [33]	ResNet50	83.17	78.78	87.49	85.35	86.41
StrongBaseline(2020) [8]	ResNet50	85.19	79.14	87.11	86.18	86.36
MCFL(ours)	ResNet50	86.84 [^]	78.78	83.68	89.97	86.71