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Introduction _

*  Point cloud networks emulate LN
traditional CNNs

* Map learnable weight matrices to
points in a neighborhood
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+  This mapping may not be 1:1 a) b) 0928
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each neighborhood which is either in
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«  Perform weighted sum on the chosen ) » First step in reducing complexity of

edaes point cloud networks that use graphs
9 HDGN 93.9% 85.4 100% « Future work will address the large
(Ours) overhead to store graph information




