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Abstract—We consider the problem of uncovering an unknown
attributed graph, where both its edges and vertices are hidden
from view, through a sequence of binary questions about it.
In order to select questions efficiently, we define a probability
distribution over graphs, with randomness not just over edges,
but over vertices as well. We then sequentially select questions so
as to: (1) minimize the expected entropy of the random graph,
given the answers to the previous questions in the sequence; and
(2) instantiate the vertices that compose the graph. We propose
some basic question spaces, from which to select questions, that
vary in their capacity.

We apply this framework to the problem of test generation in
Visual Question Answering (VQA), where semantic questions are
used to evaluate vision systems over rich image representations.
To do this, we use a restricted question vocabulary, resulting
in image representations that take the form of scene graphs; by
defining a distribution over them, a consistent set of probabilities
is associated with the questions, and used in their selection.

I. INTRODUCTION

There are often situations in which there is an unknown
(attributed) graph, one that is not directly observable, that
needs to be either fully or partially determined. This is a
common occurrence since, in general, entities in the world are
not directly observable, but must be inferred from some signal.
In this work, we consider the active refinement of knowledge
about such graphs through sequential questioning, which we
refer to as graph discovery. We consider the case in which
the vertices, in addition to the edges, are unknown, which
introduces the issue of vertex instantiation, the search for some
characteristic set of attributes that distinguishes a vertex from
all others in the graph, allowing its labeling and identification.
Once a vertex is instantiated, more specific questions can be
posed to further discern its attributes and edges incident. Graph
discovery can be seen as an instance of entity identification
[1], [2], [3], [4], [5], tailored to the specific structure of graphs.

Suppose we have a graph space G, containing graphs that
vary in their vertices, and let questions be functions of the form
f : G → {0, 1}, taking graphs to their binary answer. Given a
distribution over G, a natural criterion for selecting questions
is the minimization of the expected entropy of the random
graph, which in turn, corresponds to the selection of maximum
entropy questions, i.e., those in which the answer cannot be
reliably guessed. To form question sequences, distributions
are conditioned on the previous questions and answers in the
sequence. For defining distributions over the graph space G,
we use an exponential random graph model, and we give an

extension of the decomposition theorem for Gibbs distribution
to it.

The question space from which questions are selected
is important, dictating the extent to which graphs can be
determined as well as how efficiently. We propose several
types of questions, including coarse ones about the existence
of vertices, and finer ones about their uniqueness, allowing
instantiations using coarse-to-fine search [6]. We propose
questions that qualify these existence inquiries to only those
vertices that have not yet been instantiated, which increases
the size of the question space and its resolution capacity.

We apply this framework to visual test generation using
semantic questions, a problem in the field of Visual Question
Answering (VQA) [7], [8], [9], [10], [11], [12], [13], [14],
[15]. To comprehend imagery, vision systems must be able
to produce correct, compressed representations of them, and
under restrictions on their semantic content, these representa-
tions take the form of scene graphs [16], [17], [18], [19], [20].
In these graphs, vertices represent objects (e.g., people and
vehicles), and edges represent relationships between objects
(e.g., holding hands, driving, etc.), and further, they do not
have constant order (e.g., a scene may be empty or may have
numerous objects). Thus, images, before they are interpreted,
correspond to unknown graphs, and for formulating tests,
we make the assumption that questions that are informative
about these underlying graphs are also informative for vision
system evaluation. Visual test generation is related to visual
question generation [21], [22], [23], [24], extended to question
sequences. Questions that instantiate objects are referring
expressions [25], [26], [27], [28], [29], [30].

II. GRAPH DISCOVERY

In this section, we formalize our approach to graph dis-
covery, defining the graph and question spaces of interest,
and discuss question predictability and vertex instantiation. In
the next section, we consider an exponential model for graph
spaces where graphs can vary in their vertices, then consider
methods for conditional sampling from a distribution over this
space, conditioned on a sequence of questions and answers.

A. Attributed Graphs

To define attributed graphs, the following components are
required.

(i) A set ΛV of vertex attributes.
(ii) A set ΛE of edge attributes.



Fig. 1: A grid-supported graph associated with the toy example,
where there are two types of edge attributes represented by solid and
broken lines.

(iii) A set KV of vertex identifiers together with a surjection
κ : ΛV → KV .

(iv) An element 0E ∈ ΛE used to designate the absence of
an edge.

For simplicity, we assume that ΛV and ΛE are finite.

Definition II.1. An (attributed) graph is a pair G = (V,E)
where
(1) V (the set of vertices) is a subset of ΛV such that the

restriction of κ to V is one-to-one.
(2) E (representing the edges) is a mapping E : ΛV ×ΛV →

ΛE such that E(v, v′) = 0E if v 6∈ V or v′ 6∈ V

The identity E(v, v′) = 0E means that there is no edge
from v to v′ (with v, v′ ∈ V ). We will denote the empty graph
(for which V = ∅) by G = ∅. We let G(ΛV ,ΛE) (or simply G
when ΛV and ΛE are clear from the context) denote the space
of all graphs associated with ΛV and ΛE . The condition on
the restriction of κ to V ensures that no pair of vertices share
the same identifier.

With this definition, a graph has no loop if and only if
E(v, v) = 0E for all v ∈ V and it is undirected if and only if
E(v, v′) = E(v′, v) for all v, v′ ∈ V .

Running Example. Let the vertex space be
ΛV = {1, . . . , p} × {blue, red} where 1, . . . , p are location
labels (e.g., the pixels in an image). Taking κ(i, c) = i
and ΛE = {0E} models a set of grid points each labeled
by a unique color (yielding a marked point process). A
non-trivial edge space would allow for having different
types of interactions between the vertices, for example,
ΛE = {0E , solid, broken} where a probability distribution on
G could allow for the likelihood an an edge to depend on the
colors at the two corresponding vertices (see Fig. 1).

B. Question Predictability

Let a question be a function of the form f : G → {0, 1},
mapping a graph from G to a binary answer. Suppose we have
asked a sequence of questions Fk = (f1, . . . , fk); the answers
to these questions on a graph G are

Ak = Fk(G) = (f1(G), . . . , fk(G)).

Let (Ω, P ) be a probability space and G : Ω → G be
a graph-valued random variable (a random graph). Define

the conditional probability of a question f having a positive
answer given a history H = (Fk, Ak) as:

PH(f(G) = 1) ≡ P (f(G) = 1 | Fk(G) = Ak). (1)

The predictability of a question f with respect to history H
is then defined as

ρ(f,H) = |PH(f(G) = 1)− 0.5| . (2)

A question f is unpredictable if ρ(f,H) = 0 and ε-
unpredictable if ρ(f,H) ≤ ε. We call these questions unpre-
dictable because, without explicit knowledge of the graph, they
cannot be reliably guessed given the answers to the previous
questions.
Remark II.1 (Entropy Minimization). Unpredictable questions
are desirable from an information-theoretic perspective: they
minimize the expected entropy of a random graph. Let f be
an unpredictable question with respect to history H = (F,A),
and define the event GH ≡ {G ∈ G | F (G) = A}. Then,
PH(f(G) = 1) = 0.5 is equivalent to H(f(G) | GH) = 1
where H is the entropy and conditioning on GH means taking
the entropy for the conditional distribution of G given {G ∈
GH}. This implies that

f = arg min
f ′∈F

H(G | GH , f ′(G))

where

H(G | GH , f(G)) =∑
a∈{0,1}

P (f(G) = a | GH) H(G | GH , f(G) = a).

The above implication follows because

H(G | GH , f(G)) = H(G, f(G) | GH)−H(f(G) | GH)

and, since the question f is a function of a graph, we have

H(G, f(G) | GH) = H(G | GH).

Suppose we have some question space F from which to
select questions. To form a question sequence for a given
unknown graph, the next question in the sequence is chosen
by: (1) estimating the predictability of each question in F ;
and (2) selecting a question from among those that are ε-
unpredictable:

UH ≡ {f ∈ F | ρ(f,H) ≤ ε},

where H is the current history. The predictabilities can be
estimated by sampling from the conditional distribution PH
(see section IV).

C. Questions

In this section, we describe some useful questions, first for
instantiating vertices, then for refining our knowledge about
them.

Simple Questions. Let ΛV be the vertex space (associated
with the graph space G) and let B ⊂ ΛV . For G = (V,E), let



NB(G) = |V ∩B| be the number of vertices in V that belong
to B. We define questions that can establish the existence of
vertices in the unknown graph.

1. An existence question has the form:

fB(G) = I{NB(G)>0} where B ⊂ ΛV .

It has a positive answer if the graph G has one or more of
its vertices in B. Let the set of all existence questions be
denoted by F̃exist.

2. A uniqueness question has the form:

fB(G) = I{NB(G)=1} where B ⊂ ΛV .

It has a positive answer if the graph G has one and only
one of its vertices in B. Notice that for any uniqueness
question fB , if a graph G receives a positive answer
(i.e. fB(G) = 1), a vertex in this graph can be uniquely
identified through the set B, which distinguishes this
vertex from all others in the graph. We consider the idea
of vertex instantiation in the next section. Let the set of all
uniqueness questions be denoted by F̃uniq.

Running Example (cont) Suppose the graph G shown in Fig.
2 is an unknown graph that we want to determine. Let B ⊂
ΛV be the subset containing all vertices that have a location
component in the orange rectangle depicted in the left panel
of figure (i.e., B = {v ∈ ΛV | loc(v) ∈ R}, where R ⊂
L is the subset of locations depicted by the rectangle, and
loc(v) denotes the projection of v to its location component).
Then, for an existence question fB , we have that fB(G) =
I{NB(G)>0} = 1 since the graph has a vertex in B, and for a
uniqueness question fB , we have that fB(G) = I{NB(G)=1} =
1 since the graph has one and only one vertex in B. Thus, this
latter question uniquely identifies this vertex from the others
in the graph.

Fig. 2: The designated region in the left panel can be used to
instantiate the vertex in it. The designated region in the right panel
can also be used to instantiate a vertex, given that one of the two
vertices in the region is already instantiated.

We define the set of instantiation questions as F̃inst ≡
F̃exist∪F̃uniq. In practice, there are limits on the set of questions
that can be used; for example, instantiation questions may be
uninterpretable for many B ⊂ ΛV (uninterpretable in the sense
that there does not exist a compact description of the question
based on the available vocabulary). Thus, assume we only use
instantiation questions that involve B ∈ B, where B ⊂ P(ΛV )

is some collection of allowable sets. We denote this set of
questions by:

F̃inst(B) ≡ {fB ∈ F̃inst | B ∈ B}.

Instantiation. Instantiation of a vertex refers to: (1) the
discovery of some set B ⊂ ΛV that distinguishes that vertex
from all others in the unknown graph; and (2) the denota-
tion of this unique vertex with a label (e.g. vertex vi). Let
G = (V,E) be an unknown graph and suppose we have asked
a sequence of instantiation questions Fk = (f1, . . . , fk) about
it. Denote the set of vertices instantiated by these questions
by ΩInst(G,Fk) ⊂ V and denote the set of vertices that have
not been instantiated by Ω¬Inst(G,Fk). Furthermore, assume
the set ΩInst(G,Fk) is ordered according to instantiation time,
writing it in the form:

ΩInst(G,Fk) = (v1, . . . , vn′),

where each vi ∈ V and the index indicates this vertex
was the ith vertex to be instantiated. Although a vertex
v ∈ ΩInst(G,Fk) has been instantiated, in general, it is not
completely known: we only know that it exists in some subset
B ⊂ ΛV .

Because every vertex in a graph is unique (by our definition
of a graph, V ⊂ ΛV does not allow for duplicate vertices),
every vertex can be instantiated if one is allowed to ask
questions associated to any subset B ⊂ ΛV . This would be
however impractical, because the space of possible questions
to explore at each step of the algorithm would be intractably
large. When working with a coarse space of possible set
B, it is possible that there is no available questions capable
of instantiating a given vertex v of the unknown graph
because NB ≥ 2 for any set B used in the questions and
containing v. Such an event can be made considerably less
likely by progressively removing instantiated vertices from
consideration, which we now discuss.

Complex Questions. We now consider a larger space of
questions, one with questions that can be directly applied to
unexplored regions of an unknown graph. These questions can:
(1) refine our knowledge of vertices that have already been
instantiated, as well as the edges between them; or (2) focus
on discovering new vertices that have not been instantiated.

1) Post-Instantiation Questions: Suppose we have a graph
G and a sequence of questions Fk = (f1, . . . , fk), and have
instantiated a set of vertices:

V ′ = ΩInst(G,Fk) = (v1, . . . , vn′).

As mentioned above, we only have a partial knowledge of
these instantiated vertices. Suppose we want to learn more
about them. This may be done by focusing attention on
the subgraph G′ = G(V ′), i.e. the graph induced by the
instantiated vertices. Let’s consider some examples of post-
instantiation questions.
1. Vertex refinement questions: Often, we want to focus at-

tention on a single vertex, say vi ∈ V ′, the ith instantiated



vertex. A question fB,Fk,i is a vertex refinement question
if it has the following form: fB,Fk,i(G) = I{vi∈B}. Since
we already have a partial knowledge of the vertex vi, for
example, that it exists in B′ ⊂ ΛV , we will want to ask
vertex refinement questions in which B ⊂ B′.

2. Edge refinement questions: Suppose we want to learn
about the edge value E(vi, vj) between vi, vj ∈ V ′, the ith

and jth instantiated vertices. An edge refinement question
can be formulated as fB,Fk,(i,j) = I{E(vi,vj)∈B}.

Relative Instantiation Questions. In addition to focusing
attention on instantiated vertices, we also want to gather infor-
mation about non-instantiated ones and in particular quickly
instantiate new vertices. This can be done more efficiently by
removing from consideration vertices that have already been
instantiated. Suppose we have asked a sequence of questions
Fk = (f1, . . . , fk) and we want to gain information about the
non-instantiated vertices:

V ′ = Ω¬Inst(G,Fk) ⊂ V.

This may be done by forming a new graph G′ = G(V ′), i.e.
the graph induced by the non-instantiated vertices. The exis-
tence and uniqueness questions that were defined previously
had the form fB(G) = I{NB(G)>0} or I{NB(G)=1}, where
B ⊂ ΛV .

We now introduce history-dependent existence and
uniqueness questions of the form: fB,Fk

(G) = I{NB(G′)>0}
and I{NB(G′)=1} where G′ = G(V ′) and V ′ = Ω¬Inst(G,Fk).
We will denote this new set of existence and uniqueness
questions by Fexist and Funiq, respectively, and let
Finst ≡ Fexist ∪ Funiq. As above, we let Finst(B) denote
the set of instantiation questions using B ∈ B, where
B ⊂ P(ΛV ) is some collection of allowable sets. We will
refer to these questions as relative instantiation, because they
refer to information contained in the history.

Running example (cont.) Suppose we ask a sequence of
questions Fk containing the uniqueness question fB , where
B ⊂ ΛV is the set of vertices contained in the orange rectangle
on the left panel of Fig. 2. Then, this sequence instantiates the
vertex v1 in this rectangle (i.e., we have v1 ∈ ΩInst(G,Fk)).
Suppose this is the only vertex instantiated by the sequence,
and to instantiate more vertices, we ask another uniqueness
question. Let C ⊂ ΛV be the set of vertices contained in
the orange rectangle on the right panel of Fig. 2. Then,
for the uniqueness question fC,Fk

∈ Funiq, we have that
fC,Fk

(G) = I{NC(G′)=1} = 1, and we can instantiate the
vertex to the left of vertex v1. Notice, however, if we instead
ask the uniqueness question fC ∈ F̃uniq, then we have that
fC(G) = I{NC(G)=1} = 0, and this other vertex is not
instantiated.

Relative instantiation questions have at least two advantages
relative to “absolute” ones. The first advantage addresses the
uniqueness of instantiations; when using questions in F̃inst,
it is possible to instantiate the same vertex multiple times:
whenever a uniqueness question fB ∈ F̃uniq receives a positive

answer, there is no way to know whether the unique vertex
in B has already been instantiated before or whether it is a
new discovery. Removing previously instantiated vertices from
those that are admissible is therefore essential to address this
ambiguity.

The second difference concerns the capacity to interpret the
graph space. As we remarked if the set B offers a resolution
which is too coarse compared to the vertices in the graph,
a large number of questions will not allow one to identify
a unique vertex. When one progressively removes instanti-
ated vertices from consideration, more uniqueness questions
become true allowing for a more efficient exploration of the
graph space. This increased capacity comes at a cost however:
the estimation of statistics for relative instantiation questions
tends to require more data.

III. PROBABILITY DISTRIBUTIONS ON GRAPHS

We will use maximum entropy graph models (also called
exponential random graphs models) to define probability dis-
tributions on attributed graphs. We fix ΛV , κ and ΛE and
let G = G(ΛV , κ,ΛE). Given a family of sufficient statistics
U1, . . . , UK , with Uk : G → R, and real numbers u1, . . . , uK ,
the probability distribution that has maximum entropy subject
to constraints E(Uk) = uk, k = 1, . . . ,K (where E refers to
expectation) must, if it exists, take the form

Pλ(G) =
1

Zλ
exp

(
−

K∑
k=1

λkUk(G)

)
. (3)

(Conditions for the existence of the maximum entropy distri-
bution require that the set of probability distributions satisfying
the constraints is not empty and that (u1, . . . , uK) lies within
the relative interior of the set of feasible constraints.) The
optimal λ = (λ1, . . . , λK) can be obtained by solving the
system of equations

Eλ(Uk) = uk, k = 1, . . . ,K (4)

where Eλ denotes the expectation for Pλ.

We give a theoretical result on random graphs that gener-
alizes the proof of the existence of a potential associated to
a Gibbs distribution on a product space. Theorem 1 below
is (slightly) more general than decomposition theorems on
exponential random graphs such as those studied in [31], [32],
in that it addresses at once the randomness in the number
of vertices and in the edge set. We start with the following
definition.

Definition III.1. Let G = (V,E), G′ = (V ′, E′) ∈ G. One
says that G′ is a subgraph of G (with notation G′ � G) if V ′ ⊂
V and E′(v, v′) ∈ {E(v, v′), 0E} for all (v, v′) ∈ V ′×V ′. We
will also use the notation E′ � E to describe the preceding
condition.

In the special case in which E′(v, v′) = E(v, v′) if v, v′ ∈
V ′ and 0E otherwise, one says that G′ is the restriction of G
to V ′ and write G′ = GV ′ (or E′ = EV ′ ).



Theorem 1. Every positive probability π on G can be ex-
pressed in the form

π(G) =
1

Z
exp

− ∑
G′�G

Φ(G′)

 . (5)

for some constant Z and a function Φ : G → R. Moreover,
such a Φ is unique subject to the condition Φ(∅) = 0. (Proof
in supplement).

This generalization of the decomposition theorem for Gibbs
distributions over product spaces makes possible the definition
of probability distributions on G by specifying the value of Φ
on small graphs in G. Note that, if the sets of vertex or edge
attributes are large, even the definition of Φ(G) for small G
can have high complexity. One can easily extend the previous
theorem to also decompose configurations of attributes into
sums of functions of increasing complexity, even though we
will not explicitly state this notation-heavy generalization here.

IV. CONDITIONAL SAMPLING

Let G denote a finite graph space and let P be a distribution
over it. Suppose we have a history H = (F,A), and let GH
be the set of graphs that coheres with this history:

GH ≡ {G ∈ G | F (G) = A}. (6)

To sample from conditional distributions of the form PH(G) ≡
P (G | GH), the Metropolis-Hastings algorithm can be used,
with transition probability qH designed to be easily sampled
from (e.g., a uniform distribution on a finite set of elementary
moves). In this work, we use the following elementary moves:
vertex addition, vertex deletion, and individual vertex or edge
modification (details in supplement). This will generate a
sequence G1, G2, . . . of graphs. To ensure that this chain has
the stationary distribution PH , it suffices for it to be ergodic.
Since the graph space is finite, a chain is ergodic if there exists
a number n such that the chain can go from any graph to any
other graph in exactly n steps with positive probability. We can
guarantee ergodicity by checking two sufficient conditions: (1)
the chain can reach any graph in the set GH from any other
graph in this set with positive probability; and (2) for any
graph in this set, there is a positive probability of returning to
itself in one step.

Notice that the satisfaction of these requirements, and in
turn, the difficulty of conditional sampling, depends on the
questions in the history H . If questions can be arbitrary (i.e.,
questions can be any function f : G → {0, 1}), then the
space GH can be convoluted and disconnected with respect to
the simple, first-order moves employed. Indeed, with arbitrary
questions, the space GH can be an arbitrary set, and hence
conditional sampling would be almost impossible without a
brute force approach. Thus, we restrict our attention to the
questions described in the previous section. In particular, we
only consider instantiation questions in Finst rather than in
F̃inst; these questions have the valuable property that vertices
can only be instantiated once. Notice that if a history has

questions from F̃inst, then the space GH can be disconnected
with respect to first-order moves. For example, suppose a
sequence has two uniqueness questions fB1

, fB2
∈ G̃uniq,

where B1 6= B2 and B1 ∩ B2 6= ∅, and both questions have
positive answers. Then, the unknown graph either has one
vertex in B1 ∩ B2, or two vertices, one in B1 \ (B1 ∩ B2)
and the other in B2 \ (B1 ∩ B2). This is a problem because
there is no way to transition between these two scenarios with
moves where a proposed graph can only differ from the current
graph by one vertex.

V. EXPERIMENTS

For an application of this framework, we use it to evaluate
the scene understanding of vision systems, machines designed
to take imagery (or video) and produce compressed represen-
tations of it. Traditionally, to evaluate them, image represen-
tations are completely recorded by humans; as they increase
in complexity though, this approach becomes infeasible and
testing can only be partial. In VQA, the representation space
is implicitly defined in terms of semantic questions, and given
an image, parts or aspects of its representation can be tested
using them, allowing evaluations to scale. In this work, by
using a restricted vocabulary, the image representations take
the form of scene graphs, and we generate tests in the form
of binary question sequences.

For tests to be efficient, the questions cannot be selected
arbitrarily; some binary questions, for example, often can
be answered correctly using only information external to
the image (e.g., using “language priors” or statistics of
the image population), as pointed out in [15]. To illustrate
this issue, Fig. S.IV in the supplement gives a histogram
of question predictability given a history of ten previous
queries; it shows that most questions are highly predictable
(i.e., could be answered reliably based on prior knowledge),
and unpredictable questions would almost never be obtained
through random sampling. In [15], this testing issue was
addressed by, for a given question, finding two similar images
with opposite answers. Here, in contrast, we will take the
image space (and distribution over it) as fixed, and select
questions that are unpredictable with respect to it. A benefit
of this approach is that test (question sequence) error rates
can be used as estimates of test performance in the field,
under traditional statistical learning assumptions.

Scene Graphs. In our experiments, we use the image dataset
from [33], which contains 2,591 images of street scenes,
annotated as scene graphs with the following components. Let
T = {person, vehicle} be a space of object types, let W be
a set of rectangles assigning a position and a scale to each
object, and let At be the set of traits that can be attached to
an object of type t ∈ T . Hence, every object will be assigned
a type t ∈ T , a bounding box w ∈ W and a type-dependent
trait a ∈ At, and will therefore be represented by a vertex
v = (t, w, a) in the set

ΛV = {(t, w, a) | t ∈ T , w ∈ W, a ∈ At}.



- Is there a person in the designated region? (yes)
- Is there a unique person that is an adult in the designated region? (no)
- Is there a unique person that is carrying something in the designated
region? (yes: person 1)

Fig. 3: A selection of questions from a much longer sequence
provided in the supplement. The last question makes possible the
instantiation of person 1.

In our setting, the sets At are, in addition, defined as product
spaces A1

t × · · · × A
n(t)
t where Ajt defines a (small) set of

mutually exclusive properties (e.g., child vs. adult; or sitting
vs. standing, etc.). We define κ(t, w, a) = (t, w), ensuring that
no more that one object of a given type can be found at a given
location. (Details of these sets are in tables S.I and S.II).

To define the edge space, we let R denote the set of all
possible types of relationships between interacting objects.
Then ΛE = P(R) is the family of all subsets of R, so that
0E = ∅ represents an absence of interaction. Note that two
objects may have more than one type of interaction (e.g.,
holding hands while talking). Associated to a pair of types
t, t′, we also assume that a subset Rt,t′ ⊂ R specifies a
family of allowed relationships These are handled in the
stochastic model by ensuring that forbidden interactions have
probability 0.

Statistical Model. To define a distribution over the scene
graph space, we make a series of simplifying assumptions.
For a vertex v = (t, w, a) ∈ ΛV , we will write T (v) = t,
W (v) = w and A(v) = a. Letting δ(e) = I{e 6=0E}, we define
the transformation G = (V,E) 7→ σ(G) = (κ(V ), δ(E)),
mapping G to G′ = G(T × W, κ′, {0, 1}) (with κ′(t, w) =
(t, w)). We will refer to σ(G) as the “skeleton” of G. We
define a probability distribution P on G corresponding to a
two-step generative process - choosing a skeleton and then
fleshing it out with traits. We therefore decompose

P (G) = Q(G |σ(G)) · µ0(σ(G)), G ∈ G, (7)

where µ0 is a probability distribution on G′, that we will
model as a maximal entropy graph distribution given in
equation (3). The features U1, . . . UK in the model consist
of K = 21 simple, hand-crafted functions that describe the
spatial configuration and relationships of objects (e.g., the
number of objects at a given location and their sizes); see
the supplement for details. Some examples of the dataset and
some samples from the model µ0 are shown in Fig. 4. For the
parameters of µ0, we use the maximum likelihood estimate,

solved for using a stochastic optimization algorithm [34], [35],
[36], [37].

We assume that the remaining components (A(v), v ∈
V ) and (E(v, v′), v, v′ ∈ V ) are mutually conditionally
independent given κ(V ) and δ(E). Moreover, we assume
that the simple traits composing A(v) are also independent
and independent of the rest of the variables. We therefore
introduce probability distributions ϕ

(j)
t on A(j)

t for t ∈ T
and j = 1, . . . , n(t), and ϕt,t′ on Rt,t′ for t, t′ ∈ T such that,
for G = (V,E) ∈ G

Q(G |σ(G)) =
∏
v∈V

n(T (v))∏
j=1

ϕ
(j)
T (v)(A

(j)(v))∏
v,v′∈V

ϕT (v),T (v′)(E(v, v′)). (8)

where the jth component of A(v) will be denoted A(j)(v).
Notice that Q, as a product of univariate probabilities, is the
sum of all Q(G|σ(G)) over all graphs that share the same
skeleton is 1. This implies in turn that the function P defined
in (7) is a probability distribution on G.

Test Generation. For the questions space, we use the relative
existence and uniqueness questions in Finst for object instan-
tiation, as well as the post-instantiation questions for vertex
and edge refinement (see section II-C). We limit questions to
those with compact semantic descriptions. To generate tests,
ε-unpredictable questions are sequentially selected, using ε =
0.15. On each iteration, question predictabilities are estimated
by sampling from the conditional distribution; this sampling
requires initial states (i.e., starting graphs) that cohere with the
history H , which are obtained by using the samples from the
previous iteration that cohere with it (roughly 50% of them
by construction). Details are shown in the supplement.

A. Validation Study

1) Validation of the sampling algorithm: To check the
accuracy of our conditional sampling algorithm, the following
experiment was conducted. Given a history Hk of length
k = 10, we form two datasets of graphs as follows.
(1) The first dataset G0 is formed by sampling according to the

distribution PHk
using the conditional sampling algorithm

in the previous section.
(2) The second dataset G1 is formed by: (a) sampling a million

graphs according to the distribution P ; and (b) filtering
these samples to keep only those that cohere with the
history Hk.

Assuming that Hk is a sequence of unpredictable questions,
the probability that a randomly sampled graph coheres with it
is about 2−k, so that, after 10 steps, one can expect that about
a thousand out of the million sampled graphs in the second
dataset will be kept in G1. We generated the same number of
simulated samples to form G0.

By design, the dataset G1 is distributed according to the true
conditional distribution. To test the validity of the conditional



Fig. 4: Top row: Examples from dataset used to learn the skeleton-graph model µ0. Bottom row: Samples from skeleton-graph model µ0.

sampling algorithm, we compare G0 to G1 by comparing the
histograms for the likelihoods of the samples (see supple-
mentary material, Fig. S.V) and comparing the mean value
of scene features in the datasets (table S.III). For example, the
mean value for feature 1 using G1 (resp., G0) is 2.030 (resp.,
2.315), for feature 2 is 1.341 (resp., 1.418), for feature 3 is
0.0062 (resp., 0.00154). We also compared the percentage of
objects in each dataset with various trait values; for example,
the percentage of males with G1 (resp., G0) is 0.4386 (resp.
0.4601), the percentage of persons standing still is 0.4241
(resp. 0.4002); for interaction, the percentage of persons
talking is 0.5838 (resp. 0.5740), etc. (Details in tables S.IV
and S.V). Although the conditional sampling algorithm should
work in theory, this analysis indicates it also works in practice
(or, to be more precise, doesn’t show any obvious signs of
being amiss). Examples of conditional samples are shown in
Fig. 5.

Fig. 5: Conditional samples from the model, given the history
Hk = (Fk, Ak) shown in supplement (sequence 3). Loosely, this
history instantiates two people on the left-half of the image that are
interacting with each other, instantiates a person on the right-half,
and instantiates a vehicle on the right-half.

2) Model Validation: We test the validity of our scene
model with respect to the task of selecting unpredictable
questions. Suppose we have a graph G and we generate a
sequence of questions (f1, . . . , fl) for it using our statistical
model. For each selected question fk, we will record the

estimated conditional probability of that question having a
positive answer, as well as its actual answer ak = fk(G). If we
collect this data over enough (randomly selected) graphs, then
by comparing the estimated number of positive answers to the
observed number, we can assess the accuracy of the model’s
conditional probability estimates, and in turn, the accuracy of
the model in selecting ε-unpredictable questions.

Applying this, we randomly sampled 50 images from the
training set and, for each of them, generated a sequence of
length k = 25. Out of the 1250 questions generated this way,
the expected percentage of yes answers was 47.1%, while
the observed one was 41.0%. Table I shows the prediction
accuracy as a function of the position in the sequence and of
the type of question. This table indicates that the predictability
of questions according to the model often differs from their
true predictability, yet on average, the model selects questions
that fall within the acceptable range for being considered
unpredictable, i.e. on average, the questions are unpredictable
within a tolerance of ε = 0.15.

Estimated #yes Observed #yes

Questions 1-5 121.7 (48.7%) 94 (37.6%)
Questions 6-10 115.1 (46.0%) 94 (37.6%)
Questions 11-15 114.6 (45.8%) 100 (40.0%)
Questions 16-20 115.2 (46.1%) 103 (41.2%)
Questions 21-25 121.1 (48.5%) 121 (48.4%)
Instantiation questions 363.1 (48.2%) 282 (37.5%)
Trait questions 195.2 (45.5%) 200 (46.6%)
Relationship questions 29.4 (43.3%) 30 (44.1%)

TABLE I: Accuracy of the model in producing unpredictable
questions based on the question’s position in the sequence or the
question’s type (50 images, 25 questions per image).

VI. DISCUSSION

We considered the active refinement of knowledge about
unknown graphs using binary questions, where both vertices
and edges are hidden from view. These ideas were applied to
visual test generation, where we learned a distribution over
scene graphs, allowing consistent probabilities to be asso-
ciated with semantic questions, and the sequential selection
of unpredictable ones. These questions ensure tested systems



cannot only use information external to the image. Importantly,
however, question predictability is not the same as question
difficulty. Questions about a dominant color, for example, can
be easier than those about a dominant texture, even when
both are equally unpredictable. Difficulty information may
be derived by studying the performance of a population of
systems. This information might permit adaptive testing [38],
[39] on vision systems, where tests adapt based on the answers
given and focus on where performance estimates are most
uncertain, a possible direction of future research.
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