

Abstract

The unrestricted open vocabulary and diverse substances of scenery images bring significant challenges to scene recognition. However, most deep learning architectures and attention methods are developed on general-purpose datasets and omit the characteristics of scene data. In this paper, we exploit the Attention Pyramid Module (APM) to tackle the predicament of scene recognition. Our method streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the interdependency among scales, and further assists feature re-calibration as well as the aggregation process. APM is extremely lightweighted and can be plugged into existing network architectures in a parameterefficient manner. By integrating APM into ResNet-50, we obtain a boost of top-1 accuracy by 3.54\% on the benchmark dataset. Our comprehensive experiments demonstrate that APM achieves much improved performance comparing with the state-of-the-art attention methods using significantly less computation budget.

Background

Scene Recognition:

Scenery images often represent a complex view that includes multiple objects at different scales and a complicated background.

(a) ImageNet

(b) Place365

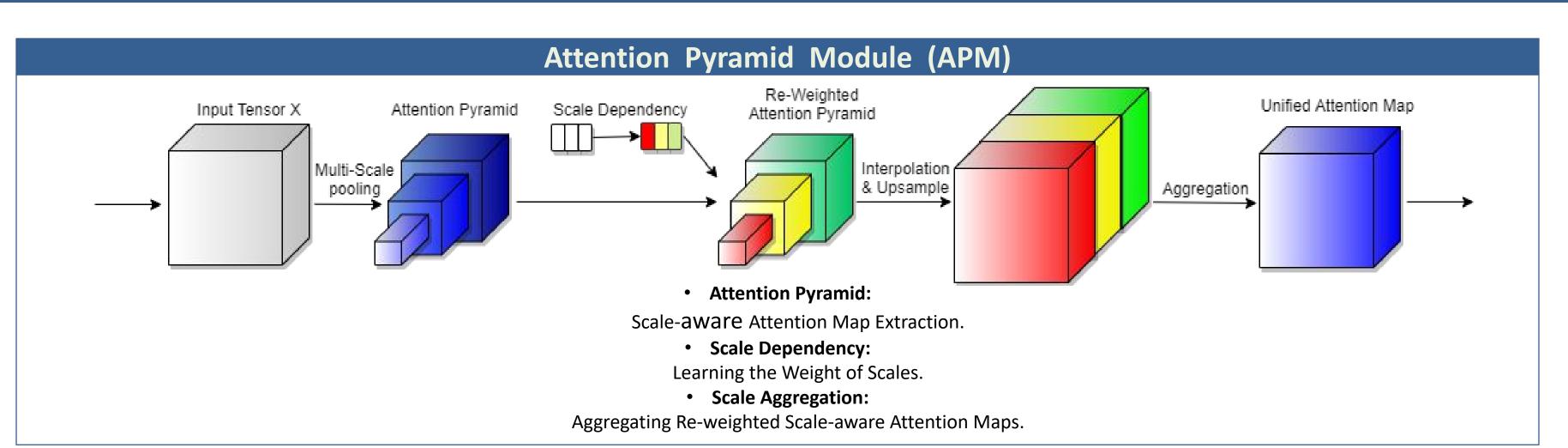
Related work & Limitations:

Conventional multi-scale scene classification methods commonly follow a four-step pipeline:

Training multi-scale networks. Extracting features. Concatenating or summing the features. Making the final prediction.

Limitation:

Each level of the pyramid requires to train a separate network, these methods often face expensive computation cost, especially when the number of levels of the pyramid increases.



		Cl
Network	1	
	I	Top-

	Top
Vanilla APM	53.6 54.9
	<i></i>

ResN

GC-ResNo SK-ResN GE-ResNo SE-ResNo CBAM-Res.

APM-Re

Highlight: Our proposed module with the vanilla ResNet50 improves the performance by 3.54% top-1 classification accuracy, whereas almost no additional computations are introduced.

Pyramid
В
Pyrami

top-1 accuracy improvement.

Zhinan Qiao University of North Texas

Attention Pyramid Module for Scene Recognition

Zhinan Qiao, Xiaohui Yuan, Chengyuan Zhuang, Abolfazl Meyarian Department of Computer Science and Engineering, University of North Texas

ResNet-18		ResNet-50	1	ResNet-101
-1 Top-5 Parar	ns Top-1	Top-5 Par	ams Top-1	Top-5 Params
93 83.778 11.36 78 84.786 11.37			26 M 56.471 29 M 56.740	86.249 43.25 M 86.770 43.31 M
	Top-1	Top-5	GFLOP	Ps Params
Net-50	54.767	84.932	4.12	24.26 M
Net-50 [17]	55.614	85.718	4.13	26.80 M
Net-50 [14]	56.142	86.274	4.18	24.85 M
Net-50 [16]	56.148	86.340	4.14	24.75 M
Net-50 [12]	56.162	86.258	4.13	26.79 M
sNet-50 [13]	56.652	86.534	4.14	26.79 M
ResNet-50	56.707	86.597	4.13	24.29 M

Ablation Study						
n (Non-learnable)		~	\checkmark	~	\checkmark	
malization	87		~		~	~
noid ion (Learnable)				~	~	~
p-1	54.767	54.896	55.318	55.477	56.162	56.707
p-1 p-5	84.932	84.942	85.499	85.592	86.129	86.597

Highlight: 1) We can observe that using APM alongside all the components except the non-learnable module leads to the best result.

2) Switching a non-learnable multiscale module to APM achieved a 0.97%

The influence of Scales of APM

Madal	ResN	let-18	ResNet-50		
Model	Top-1	Top-5	Top-1	Top-5	
Vanilla	53.693	83.778	54.767	84.932	
- L ₁	54.523	84.838	56.019	86.011	
$-L_2$	54.636	84.978	56.482	86.518	
- L3	54.540	84.767	56.099	86.403	
$L_1 + L_2 + L_3$	54.978	84.786	56.707	86.597	

Highlight: The best result, in terms of top-1 accuracy, for ResNet18 and ResNet-50 is achieved when all three scales, L1, L2, and L3 are involved.

Conclusions

- We have presented a simple yet effective module, called APM for building attention pyramids inside benchmark networks and further assisting the task of scene recognition.
- The APM can be combined with any existing backbone architectures in a plug-and-play manner with marginal computation increase.
- We also experimentally demonstrated that our APM is more parameter efficient while achieving better performance against state-of-the-art attention modules.

Email: zhinanqiao@my.unt.edu Website: https://github.com/ZN-Qiao/AP Phone: (+1) 4696825915

