HIROSHIMA UNIVERSITY

Abstract

In recent years, deeper and wider neural networks have
shown excellent performance in computer vision tasks,
while their enormous amount of parameters results in
increased computational cost and overfitting. Several
methods have been proposed to compress the size of the
networks without reducing network performance, such as
network pruning and knowledge distillation.
The performance of the smaller network obtained by these
methods is bounded by the predefined network.
In this paper, we present a novel incremental training
algorithm for deep neural networks called planting. Our
planting can search the optimal network architecture with
smaller number of parameters for improving the network
performance by augmenting channels incrementally to
layers of the initial networks while keeping the earlier
trained parameters fixed. Also, we propose using the
knowledge distillation method for training the channels
planted. By transferring the knowledge of deeper and wider
networks, we can grow the networks effectively and
efficiently.

We evaluate the effectiveness of the proposed method on
different datasets such as CIFAR-10/100 and STL-10.
For the STL-10 dataset, we show that we are able to
achieve comparable performance with only 7% parameters
compared to the larger network and reduce the overfitting
caused by a small amount of the data.

Proposed Method

Our planting approach consists of the following training
Processes (show in Fig.1)

(0) Training a large network as the teacher network.

(1) Training a small network with fewer channels of each
layer by a standard classification training method.

(2) Adding channels to a layer on the small network by
using a knowledge distillation method with the teacher
network while keeping the earlier trained parameters fixed.
(3) Repeat (2) the number of layers times

(4) Selecting a planted network with the smallest validation
loss as the next base network for planting

(5) Repeating (4) while reducing the classification loss than
the previous network

Experiments

We have performed experiments using CIFAR-10/100 and
STL-10. The structure of networks are shown in Table.1.
Table.1 The Structure of Networks
For CIFAR-10/100 | For STL-10

Channel Planting for Deep Neural Networks using Knowledge
Distillation

Kakeru Mitsuno, Yuichiro Nomura and Takio Kurita

Hiroshima University, Japan

Planting procedure

Small network - Final network

|
—) -)
- Planted weight
-
Teacher network Planted network))
B with the smallest Trained weight
validation loss Initial weight
Fixed weight
Train planted networks Knowledge transfer

Fig.1 Illustration of Planting Procedure on a typical DNNs

The results on each datasets are shown in Table.2,3 and 4.
Table.2 The Results on CIFAR-10

Network Params || Test Err. Test Acc. [[Loss func
Teacher[128] 857 5K 0.5007 88.10% CELoss
Student[128] : 03823 88.51% KLLoss

Initial Network 204K 0.8300 71.55% CELoss

(Student[8]) : 0.8245 71.69% KLLoss

0.6071 79.42% CELoss

Student[16] 439K 06108 7923% || KLLoss

0.4898 84.03% CELoss

Student[32] 148K 11 04701 84.02% || KLLoss

) 0.4431 36.83% CELoss

Student[64] 220Kl 04103 86.80% || KLLoss

Ours 40.6K][0.4825 84.35% [KLLoss
Table.3 The Results on CIFAR-100

Network Params || Test Err. Test Acc. || Loss func
Teacher[128] 369.1K 25010 57.76% CELoss
Student[128] ’ 1.6232 60.05% KLLoss

2.5280 36.53% CELoss

Student[8] 320K 25053 36.90% || KLLoss

Tnitial Network 555K 21190 4545% CELoss

(Student[16])) 2.0679 46.66% KLLoss

19022 52.15% CELoss

Student([32] 165K 17805 53.72% || KLLoss

19510 55.74% CELoss

Student[64] 293.6K 16707 5771% || KLLoss

Ours 785K || 1.7584 54.31%]| KLLoss
Table.4 The Results on STL-10

Network Params [Test Err. Test Acc. [[Loss func
Teacher[64] 445.8K 1.5360 66.33% CELoss
Student[64] : 1.1807 66.47% KLLoss

Initial Network 40.8K 1.2776 55.55% CELoss

(Student[8)) - 12682 54.99% KLLoss

12924 59.34% CELoss

Student[16] 84.9K 1.1998 61.10% | KLLoss

12213 6457% CELoss

Student[32] 186.8K 11712 64.07% || KLLoss

1.7612 67.04% CELoss

Student[128] 12M 11643 67.71% || KLLoss

Ours 826K [1.0772 67.12%]| KLLoss
Conclusion

ReLU(conv1(kernel=3))
max pooling(2+¥2)
ReLU(conv2(kernel=3))
max pooling(2*2)
ReLU(conv3(kernel=3))
ReLU(conv4(kernel=3))
ReLU(conv5(kernel=3))
max pooling(2#2)
ReLU(fcl())
output=fc2()

ReLU(conv1(kernel=3))
max pooling(2*2)
ReLU(conv2(kernel=3))
max pooling(2*2)
ReLU(conv3(kernel=3))
max pooling(2*2)
ReLU(conv4(kernel=3))
ReLU(conv5(kernel=3))
max pooling(2*2)
ReLU(fc1())
output=fc2()

We proposed a novel incremental training method called
planting using knowledge transfer, that can train smaller
network with excellent performance and find the optimal
network architecture automatically. We confirmed that the
proposed approach was able to achieve comparable
performance with smaller parameters compare to the larger
network and reduce the over-fitting.

