A Distinct Discriminant Canonical Correlation Analysis Network based Deep Information Quality Representation for Image Classification

Lei Gao, Zheng Guo, and Ling Guan

Ryerson University, Toronto, Canada

Motivation

➢ The deep-level feature representation is a datadriven solution, maybe leading to failures on the small scale data sets.

➢One potential solution to balancing the small scale and deep-level feature representation is to integrate the multi-view representation and the deep cascade structure effectively.

>In this paper, a distinct discriminant canonical correlation analysis network (DDCCANet) based

Pooling Operation

RYERSON UNIVERSITY

Then outputs from DDCCA filters are binarized based on Hashing transform as follows

 $S\{I_{d,k,g}^{out} \otimes W_{\ell}^{d}\}(\ell = 1, 2, .., L_{i+1}),$

where

$$S(x) = \begin{cases} 1, & (x > 0) \\ 0, & others. \end{cases}$$

After that, the vector of `binary bits is considered as a decimal number, resulting in a single integer-valued "image".

deep-level feature representation and extraction is proposed for image classification.

The proposed DDCCANet mainly possesses three different components, including the DDCCA filters, the pooling operation, and the information quality representation.

Distinct Discriminant CCA (DDCCA)

DDCCA aims to find the discriminant information by the within-class and between-class correlation matrices across two data sets instead of the scatter matrix, it is able to explore more discriminant representation especially in multi-feature spaces.

$$\underset{\omega_1,\omega_2}{\operatorname{arg\,max}} \rho = \omega_1^T C_{x_1 x_2}^{\sim} \omega_2,$$

subject to

$$\omega_1{}^T C_{x_1x_1}\omega_1 = \omega_2{}^T C_{x_2x_2}\omega_2 = 1$$

Information Quality Representation

Information quality (IQ) instead of histogram is employed to generate the deep-level feature representation as follows

H(p(t)) = -log(p(t))

Therefore, in the DDCCANet, the deep level representation of the kth sample in the dth view is written

$$o_{k,d} = [H(Q_{d,k,1}), ..., H(Q_{d,k,L_i})]^T \in R^{(2^{L_{(i+1)}}L_iA)}.$$

$$o_k = [o_{k,1}; o_{k,2}] \in R^{(2^{L_{(i+1)}+1}L_iA)}.$$

Results and Conclusions

THE PERFORMANCE WITH DIFFERENT ALGORITHMS ON THE ORL DATABASE HE PERFORMANCE WITH DIFFERENT ALGORITHMS ON THE ETH80 DATABASE

Mathade	Dartornanca

Methods Performance

Then Lagrange multiplier and GEV algorithms are utilized to find the solution.

DDCCA Filters

Based on the aforementioned analysis on DDCCA, DDCCA filters aims to accomplish the task of 2D convolution by vectors based product operator, which is drawn graphically in Figure. 1.

			a
DDCCANet	97.50%	DDCCANet	91.67%
AOS+VGG [12]	03 62%	CCANet [9]	91.45%
	95.0270	PCANet [17]	91.28%
CDPL [15]	95.42%	RandNet-1 [20]	78.50%
ANFIS-ABC [14]	96.00%	RandNet-1 [20]	83.51%
SOLDE-TR [15]	95.03%	DCC [21]	86.25%
GDLMPP [16]	94.50%	LEML [22]	84.25%
CNN [6]	95.00%	PML [23]	89.00%
PCANet [17]	96.50%	SDNN [26]	82.80%
CS-SRC [18]	96.00%	MFD [27]	86.91%
ANFIS [11]	96.00%	ALP-TMR [28]	84.86%
LCCA [19]	95.50%	CERML [29]	85.00%

THE PERFORMANCE WITH DIFFERENT ALGORITHMS ON THE CIFAR10 DATABASE

Methods	Performance
DDCCANet	62.05%
DCCANet [10]	60.00%
CCANet[9]	53.50%
PCANet [17]	58.01%
DCTNet [24]	56.23%
RandNet [20]	45.11%
LDANet [25]	51.42%
Wide ResNet [30]	60.00%
VGG-16 [31]	56.00%

- The proposed DDCCANet is capable of improving the quality of feature representation from original images.
- Experimental results demonstrates the superiority of DDCCANet on image classification vs state-of-the-art.