Estimating Gaze Points from Facial landmarks by a Remote Spherical Camera

Shigang Li Graduate School of Information Sciences Hiroshima City University Japan Norika Fujii Faculty of Information Sciences Hiroshima City University Japan

- People sitting around a table are observed by a spherical camera.
- Because users' faces and their gaze points can be observed simultaneously, the gaze points can be estimated directly from a single spherical image.
- **Objective**: estimating gaze points from facial landmarks by a remote spherical camera

Geometry

• Geometrical relationship among a user, a spherical camera and a gaze target

- Accurate estimation of gaze vectors and head pose by geometrical computation is not always easy in practice
- Approach: use a neural network to learn the geometry implicitly

Proposed method

Extracting facial landmarks & gaze point

Representation on a unit sphere

Processing by neural network

ICPR 2020

Four neural networks

 TABLE I

 FOUR NEURAL NETWORKS USED FOR LEARNING GAZE POINTS

	Eye Landmarks	Eye & Face Landmarks
Polar coordinates Orthogonal coordinates	EP-NN EO-NN	EFCP-NN EFCO-NN

Face Landmarks

Eye Landmarks

- Two representations of facial landmarks: *polar coordinates* or *orthogonal coordinates*
- Input landmarks to NN: eye landmarks or Eye and face boundary landmarks

Error measurement & data collection

- Error measurement of gaze point:
 - angle between the vector, $p_e = (x_e, y_e, z_e)$, of estimated gaze points and that , $p_t = (x_t, y_t, z_t)$, of the truth on a sphere

$$e_g = \arccos \frac{p_e \cdot p_t}{|p_e||p_t|}$$

- Data collection:
 - 4 subjects, 120 images per subject
 - data augmentation by rotating around the vertical axis randomly 72 times and adding random noise within 1 pixel to the coordinates of facial landmarks and gaze targets 3 times
 - For each subject, 120x72x3 (25,920) data are collected.
- Divide the dataset by 8:2 for training set and test set

Experimental results

TABLE III USING EYE LANDMARKS AND GAZE POINTS REPRESENTED AS ORTHOGONAL COORDINATES AND POLAR COORDINATES, RESPECTIVELY, FOR SINGLE-SUBJECT

	EO-NN		EP-NN	
	Mean of (deg.)	e_g Standard dev. of e_g (deg.)	$\begin{array}{ c c } Mean & of & e \\ (deg.) \end{array}$	g Standard dev. of e_g (deg.)
Subject 1	1.47	0.97	9.92	14.61
Subject 2	1.44	0.99	10.66	15.87
Subject 3	0.93	0.51	7.23	10.29
Subject 4	1.48	0.97	12.79	14.98
Average	1.33	0.86	10.15	13.94

TABLE V USING EYE LANDMARKS AND GAZE POINTS REPRESENTED AS ORTHOGONAL COORDINATES AND POLAR COORDINATES, RESPECTIVELY, FOR CROSS-SUBJECT

	EO-NN		EP-NN	
	$\begin{array}{c} \text{Mean of } e_{g} \\ (deg.) \end{array}$	g Standard dev. of e_g (deg.)	$\begin{array}{ c c } \text{Mean of } e_g \\ (deg.) \end{array}$	Standard dev. of e_g (deg.)
Subject 1	7.22	4.51	15.32	13.11
Subject 2	6.08	3.77	17.41	15.09
Subject 3	8.05	4.27	14.01	7.13
Subject 4	5.39	3.44	15.59	10.07
Average	6.68	4.00	15.58	11.35

TABLE IV

EFCO-NN USING EYE & FACE CONTOUR LANDMARKS AND GAZE POINTS REPRESENTED AS ORTHOGONAL COORDINATES AND POLAR COORDINATES, RESPECTIVELY, FOR SINGLE-SUBJECT

	EFCO-NN		EFCP-NN		
	$\begin{array}{c c} \text{Mean} & \text{of} & e_g \\ (deg.) \end{array}$	Standard dev. of e_g (deg.)	$\begin{vmatrix} \text{Mean of } e_g \\ (deg.) \end{vmatrix}$	Standard dev. of e_g (deg.)	
Subject 1	1.68	1.20	8.09	15.10	
Subject 2	1.51	0.75	11.71	16.08	
Subject 3	1.21	0.60	5.19	10.20	
Subject 4	0.86	0.39	6.68	11.77	
Average	1.31	0.74	7.92	13.29	

TABLE VI EFCO-NN USING EYE & FACE CONTOUR LANDMARKS AND GAZE POINTS REPRESENTED AS ORTHOGONAL COORDINATES AND POLAR COORDINATES, RESPECTIVELY, FOR CROSS-SUBJECT

	EFCO-NN		EFCP-NN		
	$\begin{array}{c} \text{Mean of } e_g \\ (deg.) \end{array}$	Standard dev. of e_g (deg.)	$\begin{array}{c} \text{Mean of } e_g \\ (deg.) \end{array}$	Standard dev. of e_g (deg.)	
Subject 1	4.39	2.81	10.72	10.05	
Subject 2	3.70	2.14	9.32	9.45	
Subject 3	5.13	3.50	12.45	15.49	
Subject 4	2.99	1.72	11.02	8.71	
Average	4.05	2.54	10.88	10.93	

- NN model of singlesubject outperforms that of cross-subject.
- Orthogonal coordinate representation of landmarks achieves much better performance than the polar coordinate representation.
- Combining face contour landmarks with eye landmarks can improve the accuracy of gaze point estimation a little.

Conclusions

- Propose a method of estimating a gaze point by a remote spherical camera from facial landmarks.
- The orthogonal coordinate representation of facial landmarks results in a higher accuracy than the polar coordinate representation.
- Building a larger dataset and trying different kind of models, such SVM (support vector machine), to verify the effectiveness of the proposed method is our future work.