

Hong Liu, Ziling Miao, Bing Yang and Runwei Ding Key Laboratory of Machine Perception, Peking University, Shenzhen Graduate School, Shenzhen, China

Introduction

A new base-derivative framework is proposed, where base refers to the original visible and infrared modalities, and derivative refers to the two auxiliary modalities that are derived from base.

In the proposed framework, the double-modality crossmodal learning problem is reformulated as a four-modality one. After that, the images of all the base and derivative modalities are fed into the feature learning network. With the doubled input images, the learned person features become more discriminative.

Furthermore, the proposed framework is optimized by the enhanced intra- and cross-modality constraints with the assistance of two derivative modalities.

Objectives

Three loss functions are used to guide the learning.

DID loss

Multi-mode intra-modality loss (MML)

MML enlarges the general two-mode intra-modality triplet loss into multimode (two base modalities and two derivative modalities).

Multi-directional cross-modality loss (MDL)

visible	Loss _{V,I} Infr (a)	ared	visible D _v	Loss
O ↔ ◯	New introduced cross-modality loss	\cap	Base modalities	
\rightarrow	General bi-directional cross-modality loss	$\circ \circ$	Derivative modalities	

A Base-Derivative Framework for Cross-Modality RGB-Infrared Person Re-Identification

Zero-Padding [20] ICCV17

HCML [7] AAAI18

D-HSME [10] AAAI19

eBDTR [6] TIFS17

cmGAN [24] IJCAI18

D²RL [12] CVPR19

MAC [8] MM19

MSR [9] TIP19

AlignGAN [13] ICCV19

Hi-CMD [23] CVPR20

JSIA [25] AAAI20

Ours

14.8

14.32

20.68

27.82

26.97

28.9

33.26

37.35

42.4

34.94

38.10

51.05

54.12

53.16

62.74

67.34

67.51

70.60

79.04

83.40

85.00

77.58

80.7

87.75

Results

arch		Indoor-search				
R20	mAP	R1	R10	R20	mAP	
71.33	15.95	20.58	68.38	85.79	26.92	
69.17	16.16	24.52	-		30.08	
77.95	23.12	-	-	-	-	
81.34	28.42	32.46	77.42	89.62	42.46	
80.56	27.8	31.63	77.23	89.18	42.19	
82.40	29.20	-	-	-	-	
90.09	36.22	33.37	82.49	93.69	44.95	
93.34	38.11	39.64	89.29	97.66	50.88	
93.70	40.7	45.9	87.6	94.4	54.3	
-	35.94	-	-	-	-	
89.9	36.9	43.8	86.2	94.2	52.9	
94.43	49.63	55.93	91.55	96.95	63.38	

TABLE II COMPARISON RESULTS(%) WITH THE STATE-OF-THE-ART CROSS-MODALITY RE-ID METHODS ON THE REGDB DATASET.

Mathada	visible2thermal				
Methods	R1	R10	R20	mAP	
Zero-Padding [20] ICCV17	17.75	34.21	44.35	18.90	
HCML [7] AAAI18	24.44	47.53	56.78	20.08	
eBDTR [6] TIFS19	34.62	58.96	68.72	33.46	
MAC [8] MM19	36.43	62.36	71.63	37.03	
D ² RL [12] CVPR19	43.4	66.10	76.30	44.1	
MSR [9] TIP19	48.43	70.32	79.95	48.67	
D-HSME [10] AAAI19	50.85	73.36	81.66	47.00	
AlignGAN [13] ICCV19	57.9		-	53.6	
XIV [16] AAAI20	62.21	83.13	91.72	60.18	
Hi-CMD [23] CV PR20	70.93	86.39	-	66.04	
Ours	80.67	87.72	90.45	78.83	

Conclusion

A base-derivative framework for cross-modality person Re-ID is proposed.

Multi-mode intra-modality loss and multi-directional cross-modality loss are designed to promote the reduction of intra- and crossmodality discrepancy.