
• An ideal active learning algorithm should select 
examples in a batch that are maximally useful 
and can be labeled within a budget.

• Traditional algorithms define utility of a single 
example rather than of a batch, without cost 
and budget considerations. 

• In this work we propose:
• A novel optimization formulation based on 

knapsack problem.
• A novel utility function based on the facility 

location problem that takes care of point 
utility, region utility and sample diversity.

• A novel cost function that considers that the 
labelling cost of an example depends on the 
previously labelled examples.
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𝑣! = utility of the data point 
𝑤! = labelling cost
𝐵 = Total budget

𝑓"(𝒳) = Utility function operating on batch
𝑓#(𝒳) = labelling cost function operating no 
batch
𝐵 = Total budget

Maximize the utility while minimizing the cost.

NP Hard so heuristics 
are needed

• The utility function should:
• Give higher weight to the important samples
• Give higher weights to the region that is dense 
• Reduce redundancy or maximize the diversity

• The standard facility location problem takes care 
of all three characteristics

Cost is dependent on the previous labeled examples.

Given such a cost function, one needs to find an 
optimal ordering which is given by Minimum Spanning 
tree.

Solution to the non-batch version is known to be NP-hard, however a practical solution is available based on dynamic 
programming.

When the next point is 
included

When the next point 
NOT is included

• Proposed a novel and generic AL frame- work 
that selects the optimal batch within the budget 
constraint based on the given utility and cost 
functions. 

• We also proposed a novel utility function based 
on the Facility Location problem. 

• Proposed utility function has three important 
characteristics: (a) higher weights for important 
points, (b) higher weight for dense region, (c) 
Diversity of selected points. 

• We also proposed a novel cost formulation, the 
optimal solution to which is the minimum 
spanning tree of the input batch. 

• Experimental results on four datasets show that 
our approach outperforms the baseline 
algorithms especially in the initial iterations.


