Overview

Event spotting consists in finding the exact timestamp in which an event occurs and to recognize the event type. We propose a modular framework for soccer event spotting enriched with:
- A temporal offset regression branch to predict event temporal location.
- A data sampling and balancing strategy to overcome the inherent frequency unbalance of soccer events and their sparsity during training.
- A masking policy to make the model focus on the most relevant frames of a clip.

RMS-Net

Given a short video clip \(X = (x_1, x_2, \ldots, x_T) \) from a soccer match, our network predicts a probability over action classes \(p \) and a temporal offset \(o \):
- We minimize the cross-entropy loss between predicted event class \(p_i \) and ground truth event \(c \).
- We minimize the squared-error loss between predicted relative offset \(o \) and ground truth relative offset \(r \) (excluding background events).
- At prediction stage: convert relative timestamps to absolute timestamps.

\[
\mathcal{L}_{\text{cls}} = -\sum_{i=1}^{C} y_i \log(p_i)
\]

\[
\mathcal{L}_{\text{reg}} = (o - r)^2
\]

\[
\mathcal{L} = \mathcal{L}_{\text{cls}} + \lambda \mathcal{L}_{\text{reg}}
\]

Masking Strategy

Since the majority of visual cues that contribute to the recognition of an event occur just after the event [1], we propose a masking function which encourages the network to learn robust features after the event. Our function randomly replaces the frames before an event with a background clip, as follows:

\[
M(p, q, l) = \begin{cases}
(z_1, \ldots, z_{c-1}, x_{r}, \ldots, x_T) & \text{if } r \leq q, u < p \\
(x_1, \ldots, x_{c-1}, z_{r}, \ldots, x_T) & \text{otherwise.}
\end{cases}
\]

- \(p \) is a fixed masking probability.
- \(q \) is the maximum relative temporal offset in the clip to allow masking.
- \(r \) is the starting absolute timestamp of the video clip.
- \(u \) is the relative timestamp of the event in the clip.
- \(\{z_i\}_{i=1}^{c} \) is a sequence of frames selected from a random background clip.
- \(v \) is a random value sampled from the uniform distribution \([0, 1] \).

Data Sampling and Balancing

- Given an event, extract all clips with length \(T \) containing the event, sliding a window along the time axis with stride 1.
- Slice a window of size \(T \) with stride \(T \) over the remaining parts of the matches, to obtain background clips.
- Balance the number of clips per class.
- During inference, extract and process non-overlapping clips.

RMS-Net: Regression and Masking for Soccer Event Spotting

Matteo Tomei¹, Lorenzo Baraldi¹, Simone Calderara¹
Simone Bronzin², Rita Cucchiara¹
¹University of Modena and Reggio Emilia - name.surname@unimore.it
²Metaliquid - name.surname@meta-liquid.com

SoccerNet Dataset

The SoccerNet dataset [2] provides:
- 500 full broadcast soccer matches (300 train, 100 val, 100 test).
- Annotations of spots belonging to 3 classes (Goal, Card, Substitution).
- One-second resolution annotations.
- Pre-computed ResNet-152 frame features released with the dataset.

Average-mAP: given a tolerance \(\delta \), the AP for each class is computed considering a prediction as positive if the distance from its closest ground truth spot is less than \(\delta \). The mAP is the average of the AP of each class. The Avg-mAP is the area under the mAP curve obtained by varying \(\delta \) from 5 to 60 seconds.

Main Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Clip length (s)</th>
<th>Features</th>
<th>Val-Avg-mAP</th>
<th>Test-Avg-mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoccerNet baseline [2]</td>
<td>5</td>
<td>ResNet-152 (PCA)</td>
<td>-</td>
<td>34.5</td>
</tr>
<tr>
<td>SoccerNet baseline [2]</td>
<td>20</td>
<td>ResNet-152 (PCA)</td>
<td>-</td>
<td>49.7</td>
</tr>
<tr>
<td>Vanderplas et al. [1]</td>
<td>20</td>
<td>ResNet-152 (PCA) + Audio</td>
<td>-</td>
<td>56.7</td>
</tr>
<tr>
<td>Vats et al. [4]</td>
<td>15</td>
<td>ResNet-152 (PCA)</td>
<td>-</td>
<td>60.1</td>
</tr>
<tr>
<td>Ours</td>
<td>120</td>
<td>ResNet-152 (PCA)</td>
<td>-</td>
<td>62.5</td>
</tr>
<tr>
<td>Ours</td>
<td>20</td>
<td>ResNet-152 (PCA)</td>
<td>-</td>
<td>67.8</td>
</tr>
<tr>
<td>Ours</td>
<td>120</td>
<td>ResNet-152 (PCA)</td>
<td>-</td>
<td>68.5</td>
</tr>
</tbody>
</table>

Comparison with other approaches using ResNet-152 features released with SoccerNet.

Ablation Study

mAP when varying the spotting tolerance, with and without the offset regression branch.

References