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Overview
Event spotting consists in finding the exact timestamp in which an event oc-
curs and to recognize the event type. We propose a modular framework for
soccer event spotting enriched with:

◦ A temporal offset regression branch to predict event temporal location.
◦ A data sampling and balancing strategy to overcome the inherent frequency
unbalance of soccer events and their sparsity during training.
◦ A masking policy to make the model focus on the most relevant frames of
a clip.
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Given a short video clip X = (x1, x2, ..., xT ) from a soccer match, our network
predicts a probability over action classes p and a temporal offset o:
◦ We minimize the cross-entropy loss between predicted event class pe and
ground truth event e (including background events).
◦ We minimize the squared-error loss between predicted relative offset o
and ground truth relative offset r (excluding background events).
◦ At prediction stage: convert relative timestamps to absolute timestamps.
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Lcls = −
C∑
c=0

1c=e log(pc)

Lregr = (σ(o)− r)2

L = Lcls + λLregr

Masking Strategy

Since the majority of visual cues that contribute to the recognition of an event
occur just after the event [1], we propose a masking function which encour-
ages the network to learn robust features after the event. Our function ran-
domly replaces the frames before an event with a background clip, as follows:

M(p, q)(X) =

{
(z1, ..., zt−s−1, xt−s, ..., xT ) if r ≤ q, u < p

(x1, ..., xt−s−1, xt−s, ..., xT ) otherwise,

M(p, q)
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◦ p is a fixed masking probability.

◦ q is the maximum relative temporal offset in the clip to allow masking.

◦ s is the starting absolute timestamp of the video clip.

◦ r is the relative timestamp of the event in the clip.

◦ (zi)
t−s−1
i=1 is a sequence of frames selected from a random background clip.

◦ u is a random value sampled from the uniform distribution U [0, 1].

Data Sampling and Balancing
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◦ Given an event, extract all clips with length T containing the event, slid-
ing a window along the time axis with stride 1.
◦ Slice a window of size T with stride T over the remaining parts of the
matches, to obtain background clips.
◦ Balance the number of clips per class.
◦ During inference, extract and process non-overlapping clips.

SoccerNet Dataset
The SoccerNet dataset [2] provides:
◦ 500 full broadcast soccer matches (300 train, 100 val, 100 test).
◦ Annotations of spots belonging to 3 classes (Goal, Card, Substitution)
◦ One-second resolution annotations
◦ Pre-computed ResNet-152 frame features released with the dataset.

Average-mAP: given a tolerance δ, the AP for each class is computed consider-
ing a prediction as positive if the distance from its closest ground truth spot
is less than δ. The mAP is the average of the AP of each class. The Avg-mAP
is the area under the mAP curve obtained by varying δ from 5 to 60 seconds.

Main Results
Model Clip length (s) Features Val Avg-mAP Test Avg-mAP

SoccerNet baseline [2] 5 ResNet-152 (PCA) - 34.5
SoccerNet baseline [2] 60 ResNet-152 (PCA) - 40.6
SoccerNet baseline [2] 20 ResNet-152 (PCA) - 49.7
Vanderplaetse et al. [3] 20 ResNet-152 (PCA) + Audio - 56.0
Vats et al. [4] 15 ResNet-152 (PCA) - 60.1
Cioppa et al. [1] 120 ResNet-152 (PCA) - 62.5

Ours 20 ResNet-152 (PCA) 67.8 65.5

Comparison with other approaches using ResNet-152 features released with SoccerNet.
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Per-class Average Precision, as a function of
spotting tolerance.

Model Pre-train Val Avg-mAP Test Avg-mAP

R18 + Our ImageNet 73.8 70.9
R50 + Our ImageNet 76.6 74.9

R152 + Our ImageNet 77.5 75.1

Performance when fine-tuning different variants of ResNet
withRMS-Net.

Ablation Study
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mAP when varying the spotting tolerance, with
and without the offset regression branch.

Model Val Avg-mAP Test Avg-mAP

Ours 67.8 65.5
w/o augmented offsets 48.7 46.2
w/o offset regression 58.5 55.7

w/o masking 66.5 64.0

Performance of the proposed model when removing key
components.
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Qualitative results. The ground truth action timestamp is shown in red, while the blue curve shows the number
of times a frame index was predicted as spot, sliding a 41-frames window over a video with 81 frames.
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