

UNIMORE

UNIVERSITÀ DEGLI STUDI DI

MODENA E REGGIO EMILIA

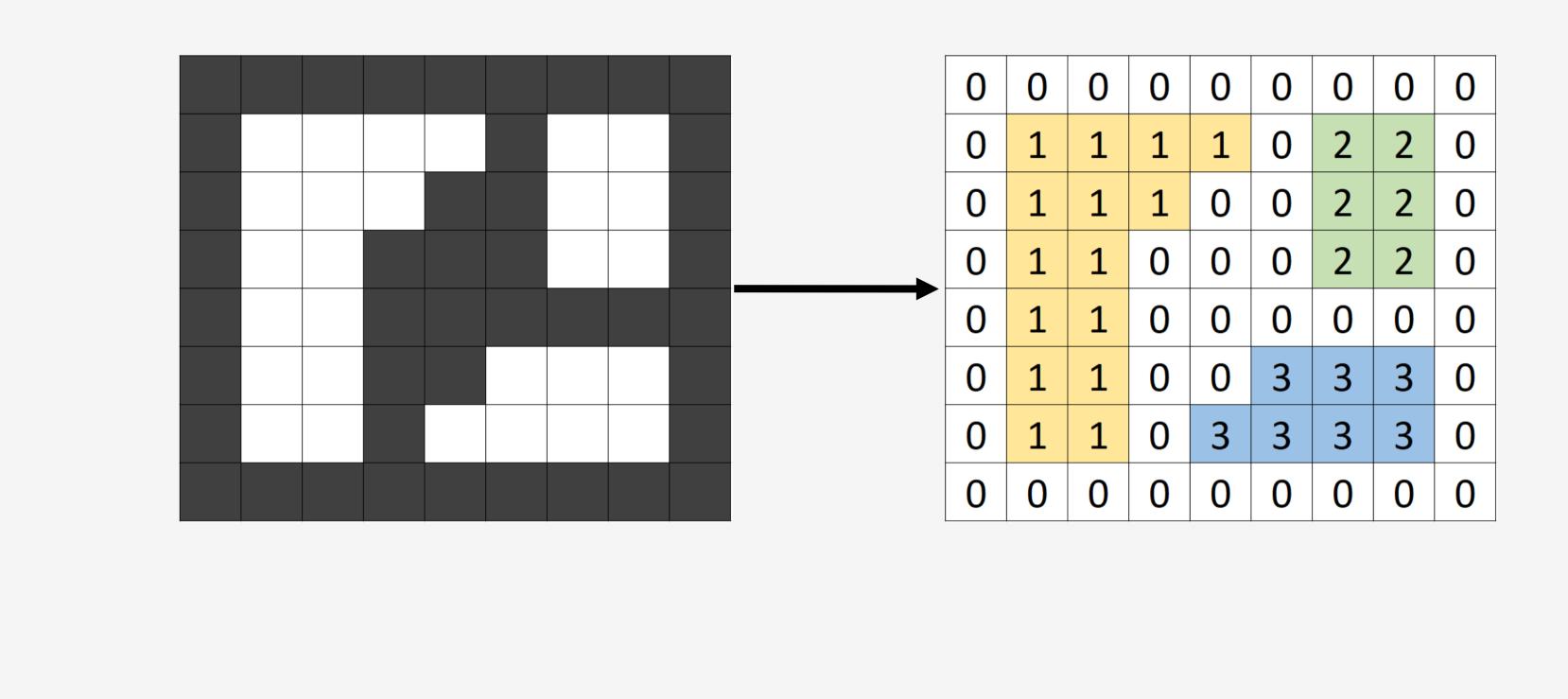
A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes

Maximilian Söchting¹, Stefano Allegretti², Federico Bolelli² and Costantino Grana² ¹University of Potsdam, Germany ²University of Modena and Reggio Emilia, Italy

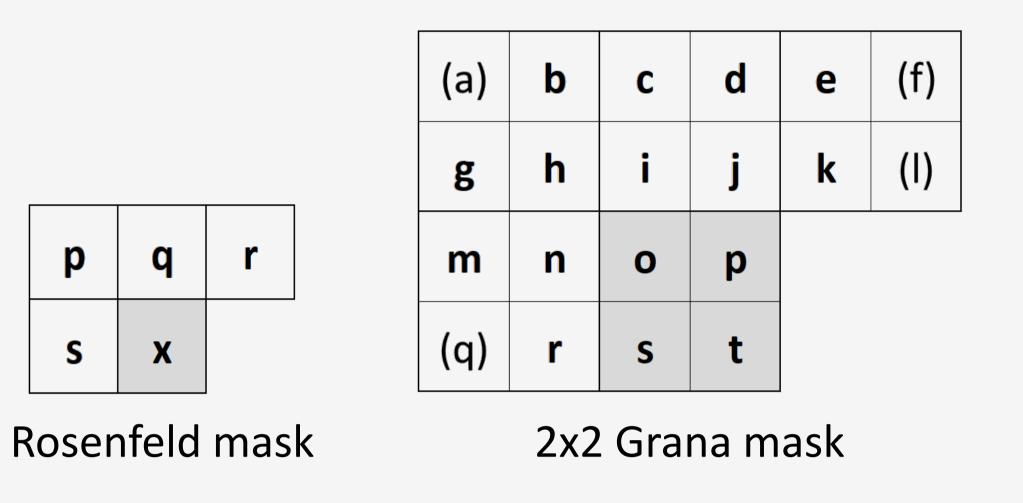
Connected Components Labeling (CCL)

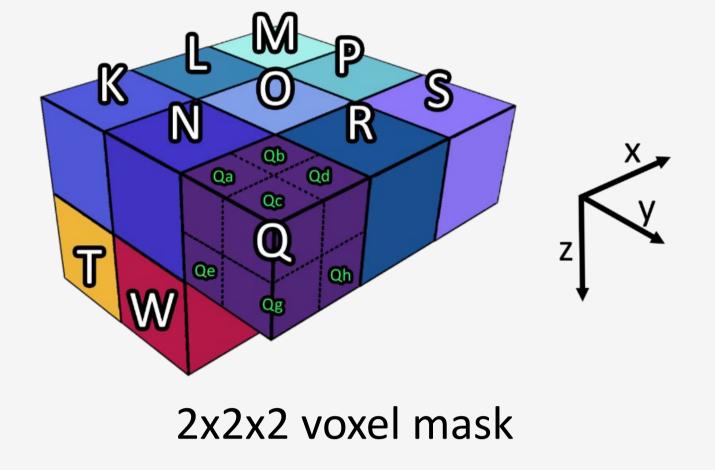
- Find all connected, foreground pixel regions within a binary image
- Each pixel region, or connected component, receives a unique label

AImage


- Fundamental for image segmentation and object recognition
- CCL should be as <u>fast</u> as possible

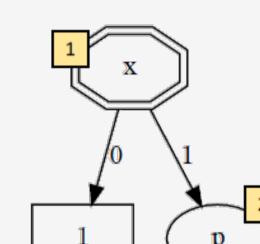
History of CCL Research


- Rosenfeld and Pfaltz invented two scans algorithms
- Wu et al. proposed **Optimal Decision Trees (ODTs)**
- Grana et al. proposed block-based mask


• What about 3D CCL?

- Multiple possible block-based masks: 2x1x1, 2x2x1 and 2x2x2
- Explosion in complexity makes the ODT generation infeasible
- Existing 3D CCL algorithms **do not employ** block-based masks

• Goal: generate a near-optimal tree with a heuristic strategy



Heuristics – Concept

- Shannon Entropy (information theory)
 - Given a set of events *E*, with *P_i* being the probability of an event *i* ∈ *E*, the entropy *H_E* is:
 - $H_E = \sum_i -P_i \log P_i$
 - Entropy describes the uncertainty of outcomes

• Decision Tree Learning

5

Applying Decision Tree Learning to 3D CCL

- New 3D EPDT CCL algorithms
- Varying block size and number of pixels
- EPDT_19c
 - Block size 2x1x1

Ka Kb La Lb Ma Mb	Та	Tb	Ua	Ub	Va	Vb
--------------------------	----	----	----	----	----	----

- Recursively partition the dataset through entropy calculation
- 1. Try *splitting* on every attribute
- Calculate Information Gain (IG) on subsets (IG measures average entropy reduction)
- 3. Apply *split* with highest information gain

• Entropy Partitioning Decision Tree

(EPDT) for the Rosenfeld mask is nearoptimal

Node	Depth	H(S)	р			q			r			s			Х		
	I	()				H_0	H_1	IG									
1	0	2.2	2.0	1.4	0.5	2.3	1.5	0.3	1.9	2.1	0.2	2.1	2.1	0.1	0.0	2.4	1.0
2	1	2.4	2.0	0.8	1.0	2.5	1.0	0.7	1.8	2.3	0.4	2.2	2.2	0.2			
3	2	2.0				2.0	0.0	1.0	1.5	1.5	0.5	1.5	1.5	0.5			
4	2	0.8				1.0	0.0	0.3	0.0	1.0	0.3	0.8	0.8	0.0			
5	3	2.0							1.0	1.0	1.0	1.0	1.0	1.0			
6	3	1.0							0.0	0.0	1.0	1.0	1.0	0.0			
7	4	1.0										0.0	0.0	1.0			
8	4	1.0										0.0	0.0	1.0			

 Smallest 3D blockbased mask

Na	Nb	Oa	Ob	Pa	Pb	Wa	Wb	Xa	Xb
Qa	Qb	Ra	Rb	Sa	Sb				

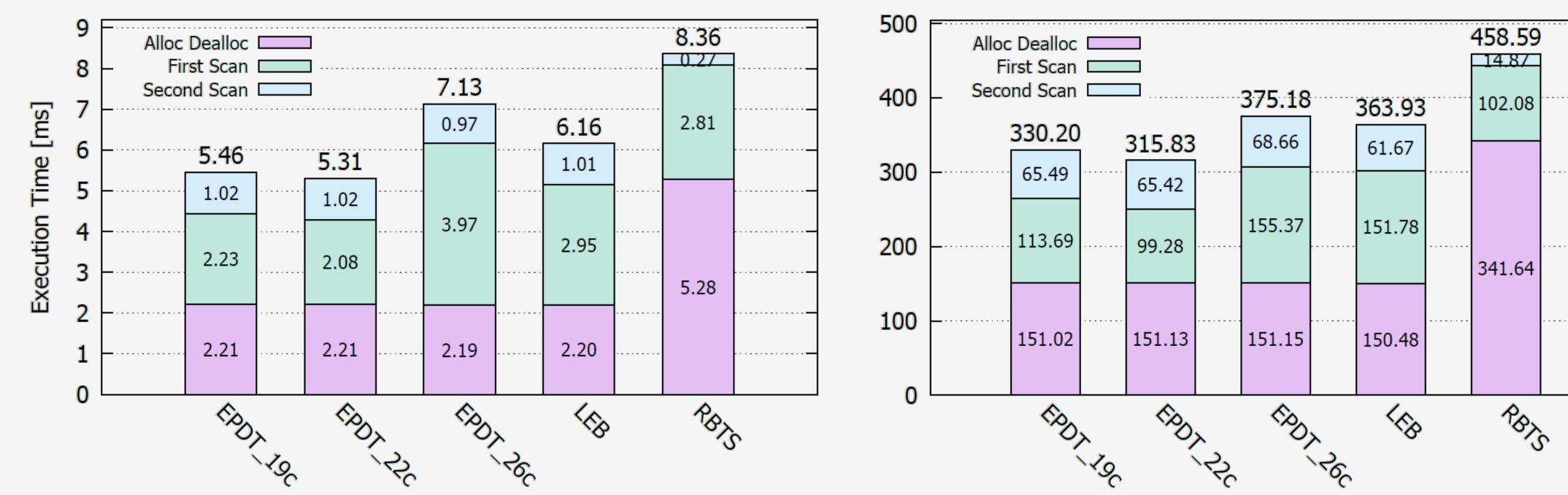
• EPDT_22c

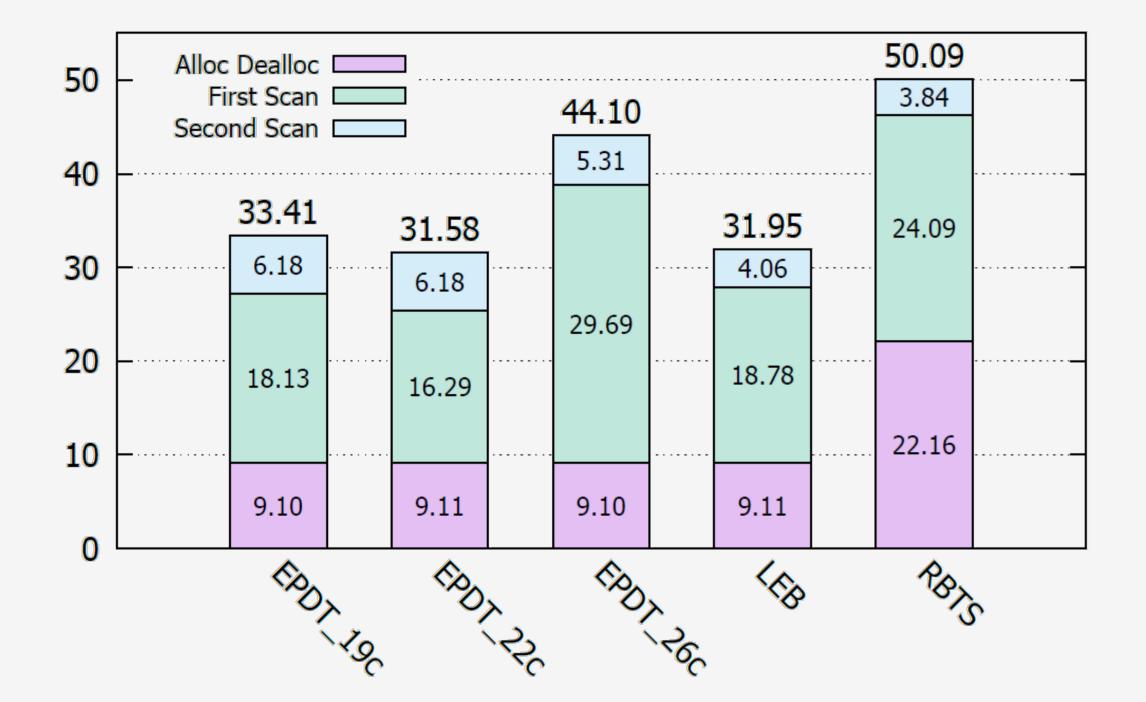
- Block size 2x1x1
- Add borders pixels, for more efficient actions

Ка	Kb	La	Lb	Ma	Mb	Та	Tb	Ua	Ub	Va	Vb
Na	Nb	Oa	Ob	Ра	Pb	Wa	Wb	Xa	Xb		
Qa	Qb	Ra	Rb	Sa	Sb					-	

• EPDT_26c

- Block size 2x2x1
- Largest tree that compilers can handle


(a	Kb	La	Lb	Ma	Mb	Та	Tb	Ua	Ub	Va	Vb
<c< th=""><th>kd</th><th>Lc</th><th>Ld</th><th>Мс</th><th>Md</th><th>Тс</th><th>Тd</th><th>Uc</th><th>Ud</th><th>Vc</th><th>Vd</th></c<>	kd	Lc	Ld	Мс	Md	Тс	Тd	Uc	Ud	Vc	Vd
Va	Nb	Oa	Ob	Ра	Pb	Wa	Wb	Xa	Xb		
٧c	Nd	Oc	Od	Рс	Pd	Wc	Wd	Хс	Xd		
Ja	Qb	Ra	Rb	Ра	Pb						
Jc	Qd	Rc	Rd	Рс	Pd						


Experimental Results

Hilbert

OASIS

Average number of load/store operations on the OASIS dataset, expressed in millions.

Algorithm	Binary Image	Labels Image	Equivalences Vector	Total
LEB	11.461	27.182	9.851	48.494
EPDT_19c	14.917	17.760	1.169	33.846
EPDT_22c	14.057	17.753	1.145	32.955
EPDT_26c	13.695	13.145	0.728	27.568

- EPDT algorithms improve the performance of the first scan by saving many **memory** accesses
- EPDT_26c has a very large decision tree \rightarrow bad impact on instruction cache
- EPDT_22c improves current state-of-the-art¹

¹L. He, Y. Chao, and K. Suzuki, "Two Efficient Label-Equivalence-Based Connected-Component Labeling Algorithms for 3-D Binary Images," *IEEE Transactions on Image Processing*, vol. 20, no. 8, pp. 2122–2134, 2011.