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State-of-the-art approaches for the estimation of hyperspectral images (HSI) from
RGB data are mostly based on deep learning techniques but due to the lack of
training data their performances are limited to uncommon scenarios where a

large hyperspectral database is available. In this work we present a family of
novel deep learning schemes for hyperspectral data estimation able to work when
the hyperspectral information at our disposal is limited. Firstly, we introduce a
learning scheme exploiting a physical model based on the backward mapping to
the RGB space and total variation regularization that can be trained with a lim-
ited amount of HSI images. Then, we propose a novel semi-supervised learning
scheme able to work even with just a few pixels labeled with hyperspectral infor-
mation. Finally, we show that the approach can be extended to a transfer learning
scenario. The proposed techniques allow to reach impressive performances while
@uiring only some HSI images or just a few pixels for the training.

Structure of the Training Pipeline

Semi-supervised Training with Images (T';)
Semi-supervised Training with Pixels (T,)
Unsupervised Training (T ,,)
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Physical Model

The physical model ensures our output to be consistent with the input RGB.
While not a sufficient constraint by itself, it provides a better training.
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Semi-supervised Training
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he training techniques combine HSI information and the physical model
he training is performed alternating the two losses
he HSI information can be provided in the form of:

1. A small set of HSI images (7T;)
2. Only some sparse pixels with HSI information (7},), as shown below
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Quantitative Results

Method HSI GT MRAERMSE
x10% %10
Aesch. et al.|3 x 10° pixels| 3.3  0.74
Yanetal. | 991images | 3.0 0.69
Canetal. | 991images | 2.2 0.59
Shi et al. 99 images | 1.4  0.48
10 images | 2.5 0.75
Ours (7;) | 10images | 1.9 0.61
100 pixels | 2.5 0.72
Ours (13,) | 1°000 pixels| 1.9  0.66
10’000 pixels| 1.7  0.55

Our approaches outperform or reach comparable performance with other fully supervised methods from the literature, which heavily rely on HSI ground truth
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