Uniform and Non-uniform Sampling Methods for
Sub-linear Time k£-means Clustering

Introduction

Among all clustering problems, the k-
means problem is probably the most
well-known one. Lloyd algorithm |1} is a
simple and elegant algorithm that gives
a certain local optimum for this prob-
lem. It works as follows. First, a set of k
centers are initialized using uniform ran-
dom sampling. Then, each point is as-
signed to its nearest center, which forms
k clusters.
each cluster is computed, which is used
as the new center of the cluster. In prac-
tice, the second and third steps can be
repeated for ¢ times. However, this algo-
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rithm has two severe drawbacks. First,
there is no theoretical guarantee for the
solution quality. Second, if the number
of points is very large, it could be infea-
sible to run this algorithm.

Research Problems

Can we design an algorithm that is effi-
cient and the clustering quality is the-
oretically guaranteed for the k-means
problem?

Backgrounds

Definition (k-means problem). Given
n data points X C R? and a set of k
points C' C R?, where d is the dimen-
sion of the data point. An objective
function is defined as follows,

bo(X) =3 &*(x,C) (1)

reX

where d(x, C') = H”élélH:E — c|| is the dis-
tance of a point to a set. The k-means
problem is to find the optimal C such

that the ¢c(X) is minimized given X .
Definition (Solution Quality 1). Let
a > 1. A set C of k centers is an
o approximation solution of k-means

if
¢c(X) < agopr(X) (2)

dopr(X) is the minimal objective.

Definition (Solution Quality 2). Let
a>1and B > 0. A set C of k cen-
ters i1s a O-bad a-approrimation solu-
tion of k-means if

oc(X) > (a+ B)popr(X)  (3)
Otherwise, C' is said to be a (B-good
Q-approximation.
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Uniform Sampling

Algorithm 1: Clustering based on uniform sampling |2]

Input: Dataset X, # of clusters k, # of points to sample s, clustering algorithm A,
Output: & centers C

S < Sample s points uniformly without replacement

C' + Solve the k-means problem on S with A,

return £ centers C

Theoretical Results

Theorem 1 (A Sharper bound of Uniform Sampling). Let 0 < 6 < 1/2, a > 1, 3 > 0
be approximation parameters. Let C be the set of centers returned by Algorithm 1 and A, is an

a approximation algorithm. Suppose we sample s points uniformly without replacement such

that, -
s = 1n(%)(1 + %)/(fAZ;Q | 1n(1/5))

n

we have

po(X) < (a+ B)oopr(X)

|

with probability at least 1 — 20, where A = max s the squared diameter of the data,
1,

m = ¢opr(X)/n is the average of the optimal objective.
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Assume that a dataset is sampled i.i.d. according to a probability distribution F' [3].

e F' has finite variance and exponential tails, 7.e. Jc, ¢ such that Pld(z, u(F)) > a] < ce™, where
w(F') is the mean of F'.

e s minimal and maximal density on a hypersphere with non zero probability mass is bounded by
a constant.

Theorem 2 (Efficiency of Uniform Sampling). Let 0 < 6§ < 1/2, a > 1, 8 > 0 be
approximation parameters. Assume above assumptions hold, and let C' be the set of centers
returned by Algorithm 1, we have the following

oc(X) < (a+ B)popr(X)
with probability at least 1 — 20 if we sample O(ln(%)%—;kQ log* n) points

Experimental Results
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Non-uniform Sampling

Algorithm 1: Double-K-MC? sam-
pling

Input: Dataset X, # of points to sample
s, chain length u

Output: & centers C

S, < Sample s points from V via K-MC?

V! < Remove S; from V

S5 < Sample s points from V' via K-MC?

For point s; € 57, let w; be the number of

points in Sy closer to s; than to any other

points in .S

Let w; + 1 be the weight of s;

C' + Solve the weighted k-means problem

on S with an o approximation algorithm

return k centers C

Conclusions

e We improve the analysis of uniform
sampling based k-means clustering
algorithm by two folds. First, a
sharper bound of solution quality is
derived. Second, the algorithm runs
in poly-log time given mild
assumptions of datasets. We then
propose Double-K-MC? sampling to
weigh sample points.

e Experiments demonstrate that the
uniform sampling based algorithm
achieves a much better clustering
quality while not spend too much
time. The Double-K-MC2 almost
runs as efficiently as K-MC2 and the
solution quality is slightly better.
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