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Introduction

Among all clustering problems, the k-
means problem is probably the most
well-known one. Lloyd algorithm [1] is a
simple and elegant algorithm that gives
a certain local optimum for this prob-
lem. It works as follows. First, a set of k
centers are initialized using uniform ran-
dom sampling. Then, each point is as-
signed to its nearest center, which forms
k clusters. Finally, the mean point of
each cluster is computed, which is used
as the new center of the cluster. In prac-
tice, the second and third steps can be
repeated for t times. However, this algo-
rithm has two severe drawbacks. First,
there is no theoretical guarantee for the
solution quality. Second, if the number
of points is very large, it could be infea-
sible to run this algorithm.

Research Problems

Can we design an algorithm that is effi-
cient and the clustering quality is the-
oretically guaranteed for the k-means
problem?

Backgrounds

Definition (k-means problem).Given
n data points X ⊆ Rd and a set of k
points C ⊆ Rd, where d is the dimen-
sion of the data point. An objective
function is defined as follows,

φC(X ) =
∑
x∈X

d2(x,C) (1 )

where d(x,C) = min
c∈C
‖x− c‖ is the dis-

tance of a point to a set. The k-means
problem is to find the optimal C such
that the φC(X ) is minimized given X .
Definition (Solution Quality 1).Let
α ≥ 1. A set C of k centers is an
α approximation solution of k-means
if

φC(X ) ≤ αφOPT(X ) (2 )

φOPT(X ) is the minimal objective.
Definition (Solution Quality 2).Let
α ≥ 1 and β > 0. A set C of k cen-
ters is a β-bad α-approximation solu-
tion of k-means if

φC(X ) > (α + β)φOPT(X ) (3 )
Otherwise, C is said to be a β-good
α-approximation.

Uniform Sampling

Algorithm 1: Clustering based on uniform sampling [2]
Input: Dataset X , # of clusters k, # of points to sample s, clustering algorithm Ac
Output: k centers C
S ← Sample s points uniformly without replacement
C ← Solve the k-means problem on S with Ac
return k centers C

Theoretical Results

Theorem 1 (A Sharper bound of Uniform Sampling).Let 0 < δ < 1/2, α ≥ 1, β > 0
be approximation parameters. Let C be the set of centers returned by Algorithm 1 and Ac is an
α approximation algorithm. Suppose we sample s points uniformly without replacement such
that,

s ≥ ln(1
δ

)(1 + 1
n

)/( β
2m2

2∆2α2 + ln(1/δ)
n

)

we have
φC(X ) ≤ (α + β)φOPT(X )

with probability at least 1 − 2δ, where ∆ = max
i,j

∥∥∥vi − vj∥∥∥2
is the squared diameter of the data,

m = φOPT(X )/n is the average of the optimal objective.
Assume that a dataset is sampled i.i.d. according to a probability distribution F [3].
•F has finite variance and exponential tails, i.e. ∃c, t such that P [d(x, µ(F )) > a] ≤ ce−at, where
µ(F ) is the mean of F .
•F ’s minimal and maximal density on a hypersphere with non zero probability mass is bounded by
a constant.

Theorem 2 (Efficiency of Uniform Sampling). Let 0 < δ < 1/2, α ≥ 1, β > 0 be
approximation parameters. Assume above assumptions hold, and let C be the set of centers
returned by Algorithm 1, we have the following

φC(X ) ≤ (α + β)φOPT(X )
with probability at least 1− 2δ if we sample O(ln(1

δ)
α2

β2k
2 log4 n) points

Experimental Results

Datasets n k d

a2 5250 35 2
a3 7500 50 2

b2-random-10 10000 100 2
b2-random-15 15000 100 2
b2-random-20 20000 100 2

KDD 145751 200 74
RNA 488565 200 8

Poker Hand 1000000 200 10

Images n k

baby 900(30 * 30) 5
kitten 3600(60 * 60) 5
bear 14400(120 * 120) 5
Table: Clustering Datesets

(a) the number of
distance evaluations
on synthetic data

(b) k-means objective
on synthetic data

(c) the number of
distance evaluations
on real data

(d) k-means objective
on real data

(a) the number of
distance evaluations
on image data

(b) kernel k-means
objective on image
data

Non-uniform Sampling

Algorithm 1: Double-K-MC2 sam-
pling
Input: Dataset X , # of points to sample

s, chain length u
Output: k centers C
S1 ← Sample s points from V via K-MC2

V ′← Remove S1 from V
S2 ← Sample s points from V ′ via K-MC2

For point si ∈ S1, let wi be the number of
points in S2 closer to si than to any other
points in S1
Let wi + 1 be the weight of si
C ← Solve the weighted k-means problem
on S1 with an α approximation algorithm
return k centers C

Conclusions

•We improve the analysis of uniform
sampling based k-means clustering
algorithm by two folds. First, a
sharper bound of solution quality is
derived. Second, the algorithm runs
in poly-log time given mild
assumptions of datasets. We then
propose Double-K-MC2 sampling to
weigh sample points.
•Experiments demonstrate that the
uniform sampling based algorithm
achieves a much better clustering
quality while not spend too much
time. The Double-K-MC2 almost
runs as efficiently as K-MC2 and the
solution quality is slightly better.
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Codes and Datasets

https://github.com/ryh95/
uniform-double-kmc2-sampling
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