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Multi-agent reinforcement learning (MARL) is of importance for | * Value Decomposition Network(VDN)
variable real-world applications but remains more challenges like 1 * VDN algorithm learns a joint action-value function
stationarity and scalability. MARL) is intrinsically difficult than the 1 Qtot (T, @) represented by the sum of individual value
single-agent settings because of some multiagent pathologies such as | functions Q;(t}, a’; 8%)
the environment non-stationary problem, curse of dimensionality, 1 N o
credit assignment problem. 1 Qtot(T,a) = Z Qi(7",a";0")
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1 * QMIX transforms the centralized state information into the
I weight of the agent’s local action-value Q; though deep
| neural networks. It structurally enforces that the joint-action
| value is monotonic in the per-agent values and the extra
I state information on the mixing network performs an

1 essential role.
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The main contributions of our work: 1
» We propose a value-based architecture which factorizes the I .
joint value function with only the partial observations and 1 [ Experiments ]
actions of local agents. . . F. Multi-Agent Particle Environment(MPE)
» We adopt attention mechanism to learn the correlations 1
between agents and compute the decomposition weight of each |
agent’s action-value function. 1 ageur __--0O .
» Our proposal effectively exploits the information in multiagent 1 O - O
. . . I agent |
system and achieves state-of-the-art performance in different o R
. . andmar} landmark
cooperative MARL environments. | F] o . D'
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Performance in MPE

*  For each agent, there is an action-value network, which * StarCraft Multi-Agent Challenge(SMAC)
adopts the DRQNs structure and receives the current agent
observation o} and the last action al_; as input at each time
step.

¢ Use an attention based policy architecture computing the
Q¢o¢ Which learns the correlations between agents.
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