UDBNET: Unsupervised Document Binarization Network *via* **Adversarial Game**

Amandeep Kumar^a*, Shuvozit Ghose^b*, Pinaki Nath Chowdhury^c, Partha Pratim Roy^d, Umapada Pal^c (*Equal Contribution) ^aTechno Main Salt Lake, Sector V, Kolkata, India. ^bInstitute of Engineering and Management, Kolkata India. ^cIndian Statistical Institute, Kolkata, India. ^dIndian Institute of Technology, Roorkee, India.

1. Problem

Degraded document image binarization is very challenging tasks due to various reasons. Although state-of-the-art binarization methods works for supervised setup, [1] first introduced unsupervised setup for document image binarization. It consists of Texture Augmentation Network (TANet) that superimposes noisy appearance of degraded document on clean binary image to generate multiple degraded image of same textual content with various noisy textures. Next Binarization Network (BiNet) is used to get back the clean version of the document image.

This method has several limitations. (i) TANet is completely unaware about the content at which it is conditioned on. Thus, the corresponding discriminator can not verify if the content of the generated noisy image remain consistent or not. (ii) there exist no performance quantifier that validates the performance of the BiNet on real degraded noisy image. (iii) the Binarization Network (BiNet) has dataset bias towards generated noisy images. But, to adddress the dataset bias, BiNet does not use any kind of formulation.

3. Proposed Methodology

In this paper, we address the aforementioned limitations by introducing adversarial minmax game in the domain of unsupervised document image binarization. Similar to the TANet and BiNet, we propose Adversarial Texture Augmentation Network (ATANet) and Unsupervised Documenet Binarization Network (UDBNet) which utilize three-player GAN objectives. The proposed third player is a joint discriminator tries to couple both the Adversarial Texture Augmentation Network (ATANet) and Unsupervised Document Binarization Network (UDBNet) and Unsupervised Document Binarization Network (UDBNet). Our three-player min-max adversarial game comes to an end, when the distribution modelled by the Adversarial Texture Augmentation Network (ATANet) and the Unsupervised Document Binarization Network (UDBNet) align to the same joint distribution over time. The source code of the proposed system is publicly available at https://github.com/VIROBO-15/UDBNET.

2. Motivation

In our observation, these limitations are due to the fact that the TANet and BiNet both employ straight-forward two-player Generative Adversarial Network (GAN) objectives and model two different uncorrelated conditional distributions. We address these limitations by introducing adversarial minmax game in the domain of unsupervised document image binarization.

5. Conclusion and Future Work

In this paper, we have proposed a novel approach towards document binarization by introducing three-player min-max adversarial game. We introduce a joint discriminator which tries to couple the Adversarial Texture Augmentation Network (ATANet) and Unsupervised Document Binarization Network (UDBNet) so that it can tackle the dataset bias problem and perform well on the real degraded document image. The proposed framework is simple and easy to implement. We demonstrate the effectiveness of our system by conducting experiments on publicly available DIBCO datasets. The results of the experiment show the superiority of our proposed model.

	4. Results									
_	Degraded image (a) I friend c drive frie	Clean image	Generated noisy image	Bhunia et. al.	Ours	Real degraded image	Groud truth	Bhunia et. al.	Ours	
	(p) - omd .i9m	met 1400] ot Suratts he Schepe bper/bert	met 1408	mee 'n4063 ac Auranne he Achene	met 1400	3139 Goldingan, May 8. 1849., Wher trium brief , main Wither Radolf, Jake inf wing non	31399 Bjöllingom, Mage 8, 1849., Where himme brist, min histor Rudolf, Jake infering man	Man Mar & All Mar & All	Arter Kinn brief , main histor Rudolf , fate inf wind an	
	(c) the la	- in ch on th n fire	on de	- con de on de nº fize	on de	Gunne forfafter W. Grimm 2. G. Josepherte. Berlin	Gun for falor W. Grimm Jefuleyb. S. f. Berlin	Ala Jorna Fraffator W. Grimm	Gener forfafter W. Grimm 2. J. J. J. Berlin	
	a destroy it , thus defreed (p)	bi se mož redništvo na omoljubov, se gotovo n	bi se mož redništvo na omoljubov, se gotovo n	bi se mož edništvo na omoljubov, se gotovo n	bi se mož redništvo na omoljubov, se gotovo n	Gothel oniffer Bryen sin and La. Insel jufe, til winte om grungen Grugen Mo. L.	Br 6076 Guthel Aniffer Bayen sin une to. brul jufo; til wintp son grugen Grogen M. L	Gills oniffer Try	Guthel onifilm Bryon sin anim to. brulgafo, sil comfo on grugen Grogen Mo. L.	
	(f) in An	Sako u S'tabo se O Gosj Od tebe	Sako u Stabo se O Gosp	Sako u Stabo se Od tebe	Sako u S'tabo se O Gosp Od tehe	Cirifiantus chenauer Effor in Creixferg. et Foannes Gotenehader elimenearig in Haslach, pleses Hochenau.	Chifhantons Schenauer Giftor in Creixberg. et Joonnes Wottenehaller climentarig in Haslach, plexis Hochenau.	Report of the second	Cipacity contracts for the Courses	

Comparison of Our method with Baseline Methods

References

- [1] A. K. B. et al., "Improving document binarization via adversarial noise-texture augmentation," in *ICIP*, 2019.
- [2] N. Otsu, "A threshold selection method from gray-level histograms," *IEEE-TSMC*, 1979.
- [3] J. Sauvola and M. Pietikäinen, "Adaptive document image binarization," *Pattern recognition*, 2000.
- [4] N. Howe, "Document binarization with automatic parameter tuning," *IJDAR*, 2013.
- [5] B. S. et al., "Binarization of historical document images using the local maximum and minimum," in *DAS*, 2010.
- [6] F. J. et al., "Degraded document image binarization using structural symmetry of strokes," *Pattern Recognition*, 2018.
- [7] G. D. Vo and C. Park, "Robust regression for image binarization under heavy noise and nonuniform background," *Pattern Recognition*, 2018.
- [8] Q. V. et al., "Binarization of degraded document images based on hierarchical deep supervised network," *Pattern Recognition*, 2018.
- [9] F. W. et al., "Document image binarization using recurrent neural networks," in *DAS*, 2018.
- [10] S. He and L. Schomaker, "Deepotsu: Document enhancement and binarization using iterative deep learning," *Pattern Recognition*, 2019.

Methods	F-Measure	F_{PS}	PSNR	DRD
UDBNet-CL	92.7	95.8	19.9	2.6
UDBNet-GRL	93.2	96.0	20.1	2.4
Ours	93.4	96.2	20.1	2.2

Quantative results on H-DIBCO 2016 and DIBCO 2011 dataset								
Methods	H-DIB	16 Datase	et	DIBCO 2011 Dataset				
	F-Measure	F_{PS}	PSNR	DRD	F-Measure	F_{PS}	PSNR	DRD
Otsu [2]	86.6	89.9	17.8	5.6	82.1	84.8	15.7	9.0
Sauvola [3]	84.6	88.4	17.1	6.3	82.1	87.7	15.6	8.5
Howe [4]	87.5	92.3	18.1	5.4	91.7	92.0	19.3	3.4
Su [5]	84.8	88.9	17.6	5.6	87.8	90.0	17.6	4.8
Jia [6]	90.5	93.3	19.3	3.9	91.9	95.1	19.0	2.6
Vo [7]	87.3	90.5	17.5	4.4	88.2	90.3	20.1	2.9
Vo [8]	90.1	93.6	19.0	3.5	93.3	96.4	20.1	2.0
Westphal [9]	88.8	92.5	18.4	3.9	-	-	-	-
DeepOtsu [10]	91.4	94.3	19.6	2.9	93.4	95.8	19.9	1.9
Bhunia [1]	92.3	95.4	19.9	2.7	93.7	96.8	20.1	1.8
Ours	93.4	96.2	20.1	2.2	95.2	97.9	20.4	1.5