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Abstract. In this work, we propose a deep depth-aware long-term tracker that
achieves state-of-the-art RGBD tracking performance and is fast to run. We
reformulate deep discriminative correlation filter (DCF) to embed the depth
information into deep features. Moreover, the same depth-aware correlation filter
iIs used for target re-detection. Comprehensive evaluations show that the
proposed tracker achieves state-of-the-art performance on the Princeton RGBD,
STC, and the newly-released CDTB benchmarks and runs 20 fps.
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Method: We propose a non- Statlonary deep DCF that utilizes depth to modulate S 057 T sucesspos [—mem ] ae pe—

the DCF content with respect to the filter position: : —omemen || — by
f(x.y) = £© O(x. ).

where f is a stationary base filter, @(x,y) is a non-stationary 2D modulation |},. ==&

map, and O is a Hamadarad product, that multiplies all channels of the base | = = &t
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filter with the same modulation map.The purpose of the modulation map is to o S Ty
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give more weight to the pixels with depth values similar to the tested target e AR EEEE |
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position, thus reducing the effect of the background and occlusion. e e Y EN U — N C

Let D(x, y) be the depth at the tested position and let D(x + m,y +n) bethe| + " om0 | SSe0RS
‘ Precision plots
depth of the neighboring pixel. The modulation map is then defined as: ° P

0,,(x,y) = exp(—a|D(x,y) = D(x + m,y +n)|),
where a Is a hyper parameter that controls the modulation strength.
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The loss for training the non- stationary DCF becomes : e ||
Lojg = z e (x*# O ),z ) 1P ' SIBe i
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where * is the convolution operation and z. refers to the corresponding a. b.

Figure 2. a) The overall tracking performance is presented as tracking F-measure (top) and
tracking Precision-Recall (bottom) on the CTDB dataset. b) Success and precision plots on STC
benchmark. ¢) The overall tracking performance is presented as tracking F-measure (top) and
regression error £(s,z) =s —z for z > T and £(s,z) = max(0,s) for z < T, | tracking Precision-Recall (bottom) on the CTDB dataset. d) Precision-Recall curves and F-measure

where 1'is a threshold on the error. as function of varying a for depth-modulated DCF. Evaluated on CDTB dataset

Gaussian function centered on the target location ¢ of the training sample X and
Niter is the number of steepest descent iterations. The loss applies a nonlinear




