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Abstract
Getting deep convolutional neural networks to
perform well requires a large amount of training
data. When the available labelled data is small, it is
often beneficial to use transfer learning to leverage
a related larger dataset (source) in order to improve
the performance on the small dataset (target).
Among the transfer learning approaches, domain
adaptation methods assume that distributions
between the two domains are shifted and attempt
to realign them. In this paper, we consider the
domain adaptation problem from the perspective
of multi-view graph embedding and dimensionality
reduction. Instead of solving the generalised
eigenvalue problem to perform the embedding, we
formulate the graph-preserving criterion as a loss in
the neural network and learn a domain-invariant
feature transformation in an end-to-end fashion.
We show that the proposed approach leads to a
powerful Domain Adaptation framework which
generalises the prior methods CCSA [1] and
d-SNE [2], and enables simple and effective loss
designs; an LDA-inspired [3] instantiation of the
framework leads to performance on par with the
state-of-the-art on the most widely used Domain
Adaptation benchmarks, Office31 and MNIST to
USPS datasets.
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Figure 1: Two-stream network architecture for domain 
adaptation.

TABLE II: Macro average classification accuracy (%) for Office-31 using a VGG16 network pretrained on ImageNet. The
reported results are the mean and standard deviation across five runs.

A ! D A ! W D ! A D ! W W ! A W ! D Avg.

FT-Source 66.6± 3.0 59.8± 2.1 42.8± 5.2 92.3± 2.8 44.0± 0.7 98.5± 1.2 67.4
FT-Target 71.4± 2.0 74.0± 4.9 56.2± 3.6 95.9± 1.2 50.2± 2.6 99.1± 0.8 74.5
CCSA 84.8± 2.1 87.5± 1.5 66.5± 1.9 97.2± 0.7 64.0± 1.6 98.6± 0.4 83.1
d-SNE 86.5± 2.5 88.7± 1.9 65.9± 1.1 97.6± 0.7 63.9± 1.2 99.0± 0.5 83.6
DAGE-LDA 85.9± 2.8 87.8± 2.3 66.2± 1.4 97.9± 0.6 64.2± 1.2 99.5± 0.5 83.6

TABLE III: Classification accuracy (%) for MNIST ! USPS
with a varying number of target samples per class.

Samples/class 1 3 5 7

CCSA 75.6± 2.1 85.0± 1.4 87.8± 0.7 89.1± 0.7
d-SNE 69.0± 1.7 80.4± 1.7 86.1± 0.9 87.7± 0.9
DAGE-LDA 67.0± 1.9 82.7± 1.7 89.0± 0.8 90.7± 0.5

best for 5 and 7. Contrary to our expectation, d-SNE performed
worst for MNIST ! USPS.

C. Discussion of Experimental Setup

In our effort to reproduce the results of CCSA and d-SNE,
we saw a trend that was recently outlined in [33, 34, 35],
namely that published results may not generalise as expected.
Supporting this, is our observation that a validation set was
not used in either of the published codes. Furthermore, in
the testing procedures, we observed that evaluation on the
test set was performed after every epoch of training, with the
end-result being the highest performing evaluation throughout
training process. Hence, the test set was used as validation
set in practice. We suspect that the results of many domain
adaptation methods using these datasets is best viewed as the
performance on a validation set. While this is not necessarily
a problem if the result are used solely for comparison between
methods using this same practice, it may be misleading readers
who expect results to generalise.

V. CONCLUSION

Domain adaptation methods help achieve better perfor-
mance on tasks where data is scarce by leveraging larger
related datasets to learn good feature representations. In this
work, we treat domain adaptation as a dimensionality reduc-
tion problem and propose a novel use of Graph Embedding
by integrating the trace-ratio objective as a loss in a deep
neural network, that is trained end-to-end. Using this Domain
Adaptation Graph Embedding framework (DAGE), we test a
simple LDA-inspired domain adaptation loss (DAGE-LDA) on
standard benchmarking datasets and reevaluate CCSA and d-
SNE, two the recent state-of-the-art methods, which can be
seen as instantiations of DAGE. Under identical experimental
conditions, DAGE-LDA matches or beats the overall accuracy
of both prior methods, highlighting the treatment of domain
adaptation as a multi-view graph embedding problem.
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Conclusion
DAGE provides a flexible and interpretable framework 
for domain adaptation. A simple instantiation, DAGE-
LDA, achieves performance matching prior stat-of-the-
art methods.

Experiments and Results

Table II: Classification accuracy (%) for MNIST → USPS with a 
varying number of target samples per class. 

Table I: Macro average classification accuracy (%) for Office-31 
using a VGG16 network pretrained on ImageNet. For each run, 3 
samples/class were drawn for the target data, and 8(20) from 
source data for DSLR, Webcam, (Amazon). The reported results 
are the mean and standard deviation across five runs. 
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