The Surprising Effectiveness of Linear Unsupervised Image-to-Image Translation האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM **Eitan Richardson and Yair Weiss** Ailan, Italy 10 | 15 January Linear, orthogonal image-to-image translation **Unsupervised Domain Translation (UDT)** Input: datasets D_A , D_B sampled from the *marginals* Find $T: A \rightarrow B$ (b = Ta) such that TT' = T'T = IP(A), P(B) of some joint distribution P(A, B). Challenges: •*T* is very large Task: Learn P(B|A)•Unsupervised learning scheme? •Expressiveness? UDT is ill-posed ! Solution: Learn a linear transformation in PCA space $B \uparrow$ $T_{\theta}: A \to B$ $T = W_B Q W_A$ $T_{\theta}: A \to B$ No pairing a_i, b b_{j} r principal components of D_B r principal components of D_A learned $r \times r$ orthogonal matrix b_i Arbitrary pairing $T_{\theta} = ?$ Given pairing Colorization LSUN 140 CelebA – FFHQ 10² Orig Shoes 120 В a_i a_i Variance 10¹ .⊆ distance i 001 001 500 Toy example: $A, B \subset \mathbb{R}$. Without matching pairs, an arbitrary pairing defines a valid transformation. 100 So how does CycleGAN, MUNIT, ... work? 1000 10^{-1}

Locality bias: Problem + Architecture

CycleGAN, ... use an autoencoder bottleneck with a large spatial size and small convolution kernels.

Nonlocal <u>problem</u> – failure:

CycleGAN and MUNIT fail to learn a simple nonlocal problem like vertical flip.

Nonlocal <u>architecture</u> – failure:

MUNIT[‡]

Natural images are well represented by relatively few PCA components ($r \ll d$).

Some real tasks like colorization are close to being distance-preserving.

Algorithm 1: Orthogonal UDT in PCA subspace

Input: $\mathcal{D}_A = \{x_1^A, \dots, x_n^A\}, \ \mathcal{D}_B = \{x_1^B, \dots, x_m^B\}, \ r$

1 Compute W_A, W_B : r principal components of $\mathcal{D}_A, \mathcal{D}_B$

3 Compute PCA embedding $\{z_1^A, \ldots z_n^A\}, \{z_1^B, \ldots z_m^B\}$

Result: Orthogonal transformation $T: A \to B$

 $j \leftarrow \arg\min_{j'} ||z_i^A Q - z_{j'}^B||$

 $k \leftarrow \arg\min_{k'} ||z_{k'}^A Q - z_j^B||$

A.insert-row (z_i^A) , B.insert-row (z_j^B)

2 Fix eigenvectors sign for positive skew

Learning method: Procrustes + ICP in PCA space

4 Initialize $Q \leftarrow I$

9

10

11

12

13

5 while not converged do

 $A \leftarrow \emptyset, B \leftarrow \emptyset$

for $i \leftarrow 1$ to n do

if k = i then

 $U, S, V \leftarrow \text{SVD}(A^T B)$

14 return $T \leftarrow W_A^T Q W_B$ PCA ambiguity is resolved via skewness. Target Q is close to identity.

Results

Task	CycleGAN‡			MUNIT‡			Ours‡			Ours†		
	MSE	SSIM	T[h]	MSE	SSIM	T[h]	MSE	SSIM	T[h]	MSE	SSIM	T[h]
CelebA-colorize	0.0066	0.914	49	0.0256	0.750	52	0.0043	0.883	0.04	0.0071	0.761	0.04
CelebA-vflip	0.1167	0.358	43	0.1084	0.333	48	0.0012	0.917	0.04	0.0041	0.780	0.04
FFHQ-rot90	0.1267	0.302	39	0.1220	0.268	39	0.0023	0.870	0.05	0.0335	0.381	0.05

Colorize

 $Q \leftarrow UV$

Target

Inpaint

StyleGAN encoder-decoder with flat bottleneck, based on ALAE. Left: training, Right: inference.

A deep UDT architecture w/o locality bias converges to an *arbitrary* solution.

Conclusion

- UDT is in general ill-posed.
- SOTA unsupervised im2im methods rely on locality bias. •
- Our approach linear orthogonal transformations can be learned in a few seconds and works well for many true relations.