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Abstract

This paper proposes an attentional network for
the task of Continuous Sign Language Recog-
nition. The proposed approach exploits co-
independent streams of data to model the sign
language modalities. These different channels of
information can share a complex temporal struc-
ture between each other. For that reason, we
apply attention to synchronize and help capture
entangled dependencies between the different sign
language components.

Contributions

•Devising an end-to-end framework for sequence to
sequence Sign Language Recognition that utilizes
self-attention for temporal modeling.

•Elaborating a more efficient method to
incorporate handshapes with their spatiotemporal
context for Sign Language Recognition.

•Achieving competitive results, in terms of Word
Error Rate, on the RWTH-PHOENIX-Weather
2014 benchmark dataset.

Introduction

Sign languages are often defined as manual lan-
guages. However, besides the hand articulations,
non-manual components like facial expressions, arm,
head, body movements, and positions play a crucial
part in Sign Languages. Any change in one of these
components can alter the meaning of a sign. Usually,
the handshape performed by the dominant hand car-
ries most of the meaning of the sign. Accordingly, in
this paper, we propose an attention-based approach
for sequence to sequence sign language alignment
and recognition. Unlike previous works, the original-
ity of our approach lies in explicitly picking up and
aggregating contextual information from the non-
manual sign language components. Without any
domain annotation, our approach is able to exclu-
sively identify the most relevant features associated
with the handshape when predicting a sign.

Proposed Approach

Figure 1:Combination of both the full-frame and the handshape streams through a Context-Hand Attention layer.

Approach Variations

•First, Sign Attention Network (SAN) that employs self-attention for temporal modeling.
•Second, we add a secondary stream for the dominant handshape sequences and we combine the hand
features with their Spatio-temporal full-body context.

•Third, instead of considering the entire context information, we merely attend to information from the
handshape local surroundings by applying a local relative mask. This will allow the model to only focus
on the required context, discarding unnecessary distant information.

Qualitative Analysis

SAN with hand stream pri-
marily focus on the domi-
nant hand (right hand) and
the face area which rein-
forces the intuition that our
model is able to identify
the essential compo-
nents for sign inter-
pretations.

Quantitative Results

Figure 2:The Word Error Rate learning curve of our three SAN
variants.

As shown in Figure 2, Adding handshape features
improves training and accelerates model conver-
gence. This empirically showcases the usefulness of
combining the dominant hand with the overall con-
text derived from the nonmanual components of the
sign.

Dev Test
SAN 35.33 35.45
+ Hand Stream 33.68 34.12
+ Relative Local Masking 32.74 33.29

Conclusion

In this work, we have proposed a novel method
that exploits attention to effectively combines hand
query features with their respective temporal full-
body context without the need for any additional
supervision. We have proven the efficiency of such
an approach to the task of Continuous Sign Lan-
guage Recognition.
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