Carnegie Mellon University

Hierarchical Routing Mixture of Experts

Wenbo Zhao, Yang Gao, Shahan Ali Memon, Bhiksha Raj, Rita Singh *Carnegie Mellon University*

- Motivation & Background
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

Motivation & Background

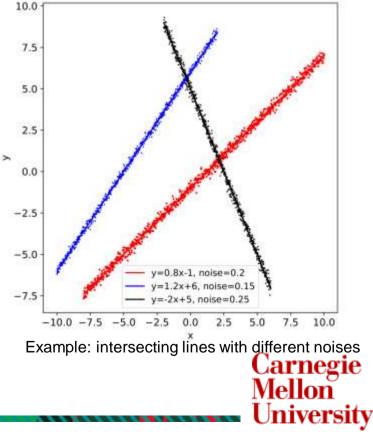
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

Carnegie Mellon

University

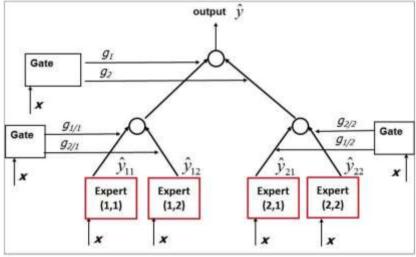
Complex data distributions are challenging for regression tasks

- Complex data distributions
 - E.g., multimodal data
 - Single regression model has high bias



Regression on complex distributions by divide-andconquer

- Conventional divide-and-conquer methods
 - Partition input space
 - Hard-partition: decision trees, random forests
 - Soft-partition: mixture of experts
 - Probabilistic tree-structured models
 - Nodes: gates to partition inputs
 - Leaves: experts to local regression
 - E.g., HME, HME-GP, HME-SVM



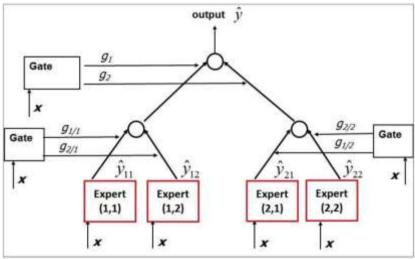
Hierarchical mixture of experts [1]

Carnegie Mellon University

Conventional divide-and-conquer methods have shortcomings

- Shortcomings of conventional methods
 - Hard-partition: decision trees, random forests
 - 1) Discontinuities
 - 2) High biases
 - Soft-partition: mixture of experts
 - 1) Do not leverage input-output dependency; gate/partition based on assumed distributions
 - 2) Need strong experts
 - 3) Need additional procedures to optimize

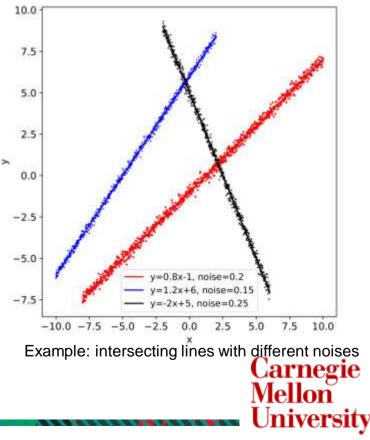
tree structures



Hierarchical mixture of experts [1]

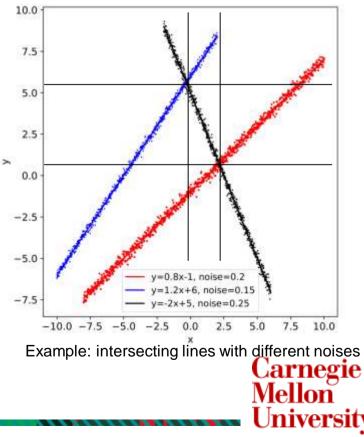
We address conventional methods' shortcomings by joint-partition and optimization

- Joint partition input-output space
 - E.g., different sub-output spaces (y) have different modes (x)
 - Joint partition (x, y) such that each sub-region has a simple mode to enable simple expert
- Joint optimization tree structure and experts



We address conventional methods' shortcomings by joint-partition and optimization

- Joint partition input-output space
 - E.g., different sub-output spaces (y) have different modes (x)
 - Joint partition (x, y) such that each sub-region has a simple mode to enable simple expert
- Joint optimization tree structure and experts
 - No need for additional structure optimization



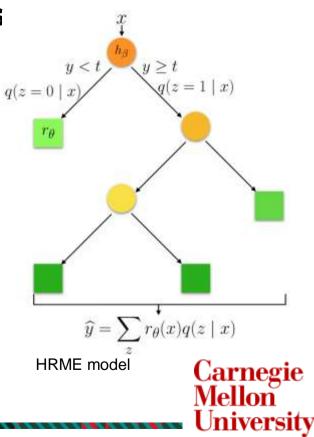
- Motivation & Background
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

Carnegie Mellon

University

Hierarchical routing mixture of experts (HRME) has classifier nodes and regressor leaves

- Binary tree
 - Node: binary classifier
 - Classify by separateness of modes
 - Soft-partition by probabilistic class assignment
 - Hierarchical partition input-output space
 - Resulting sub-region has simple mode, ideally unimodal
 - Leaf: simple regressor
 - Each sub-region has a regressor

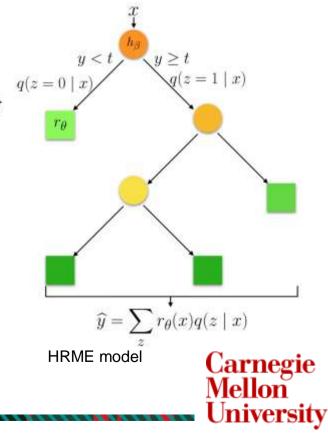


Hierarchical routing mixture of experts (HRME) makes probabilistic inference

- Probabilistic inference for data $(x, y), x \in \mathbb{R}^d, y \in \mathbb{R}$
 - Introduce a threshold t, y = 0 if y < t otherwise y = 1
 - Each node n_i carries a classifie $h_{\beta_{n_i}^*}: x \mapsto \{n_{i+1}, n_{i+2}\}$
 - Introduce a binary-valued random variable z_{n_i}

1: assign to n_i , 0: not assign

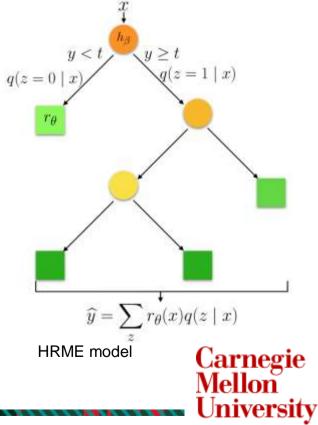
- Likelihood of assign a data x to node n_i $q(\mathbf{z}_{n_i} \mid \mathbf{x}) \equiv q(\mathbf{z}_{n_i} = 1 \mid \mathbf{x}) \longleftarrow h_{\beta^*_{n_{i-1}}}(\mathbf{x})$
- Likelihood of assign a data x to leaf l_k $q(\mathbf{z}_{l_k} \mid x) = \prod_{j=1}^{k-1} q(\mathbf{z}_{l_{j+1}} \mid \mathbf{z}_{l_j}, x)$
- Estimate by expectation of leaf predictions $r_{\theta_{l_k}^*}(x)$ $\hat{y} = \sum_{l_k \in \text{leaves}} r_{\theta_{l_k}^*}(x)q(\mathbf{z}_{l_k} \mid x) \quad p(y \mid \mathbf{z}_{l_k}, x) \leftarrow r_{\theta_{l_k}^*}(x)$



Recursive EM jointly optimizes experts and tree structure

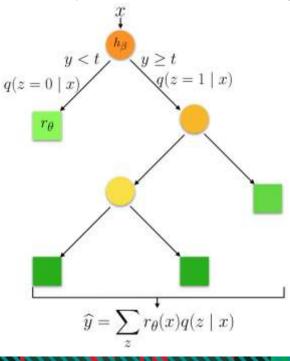
- Recursive Expectation-Maximization algorithm
 - Objective max $\log p(y \mid \boldsymbol{x}) = \sum_{z} q(z \mid \boldsymbol{x}) \log \frac{p(y, z \mid \boldsymbol{x})}{q(z \mid \boldsymbol{x})} + \sum_{z} q(z \mid \boldsymbol{x}) \log \frac{q(z \mid \boldsymbol{x})}{p(z \mid y, \boldsymbol{x})},$
 - E-step: compute evidence lower bound (ELBO) $Q(p,q) = \sum_{x} \sum_{z} q(z \mid x) \log \frac{p(y, z \mid x)}{q(z \mid x)}$ $= \sum_{x} \sum_{z} q(z \mid x) \log \frac{p(y \mid z, x)p(z \mid x)}{q(z \mid x)}$
 - M-step: optimize partition thresholds and model parameters
 - Done recursively, depth first

(Details are in the paper)



Recursive EM jointly optimizes experts and tree Algorithm 1: Recursive EM Learning of HRME Input: [data], [root] Parameter : [t], classifier parameters, repressor

• Recursive Expectation-Maximization algorithm



```
Parameter: \{t\}, classifier parameters, regressor
                  parameters
Output: HRME Tree
Function GrowTree (data list, nodes per level)
     for node in nodes_per_level do
          \mathbb{D} \leftarrow data \ list
          node l. node r \leftarrow GrowSubtree(node)
          for t do
                \begin{array}{l} \mathbb{D}_{l}, \mathbb{D}_{r} \leftarrow \texttt{SplitData}\left(\mathbb{D}, t\right) \\ \texttt{if} \quad \frac{\min(|\mathbb{D}_{l}|, |\mathbb{D}_{r}|)}{\# \ of \ total \ samples} < \min[leaf_samples] \\ \end{array} 
                                       < min leaf sample ratio
                 then continue:
               node.TrainClassifier(D, t)
               Propagate conditionals using Equation (3)
               node I.TrainLeaf (D)
               node r.TrainLeaf(D<sub>r</sub>)
               Q \leftarrow \text{ComputeO} using Equation (10)
          end
          if Q > Q^* then
               Q^* \leftarrow Q
               data list \leftarrow [\mathbb{D}_l, \mathbb{D}_r]
               nodes\_per\_level \leftarrow [node\_l, node\_r]
               GrowTree (data list, nodes per level)
          else
               Delete the subtree
               continue
          end
     end
```

Carnegie Mellon University

- Motivation & Background
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

Data

- Models
 - HRME

TABLE I: Dataset Statistics

DATASET	FEATURE DIM	TRAIN	TEST 750	
3-LINES	1	1750		
HOUSING	13	354	152	
CONCRETE	8	721	309	
CCPP	4	6697	2871	
ENERGY	28	14803	4932	
Kin40k	8	10000	30000	

- Leaf: linear regression (HRME-LR)
- Leaf: support vector regression (HRME-SVR)
- Baselines
 - Linear regression (LR)
 - Support vector regression (SVR)
 - Decision trees (DT)
 - Random forests (RF)
 - Hierarchical mixture of experts (HME)
 - Multilayer neural nets (MLP)
 Carnegie

University

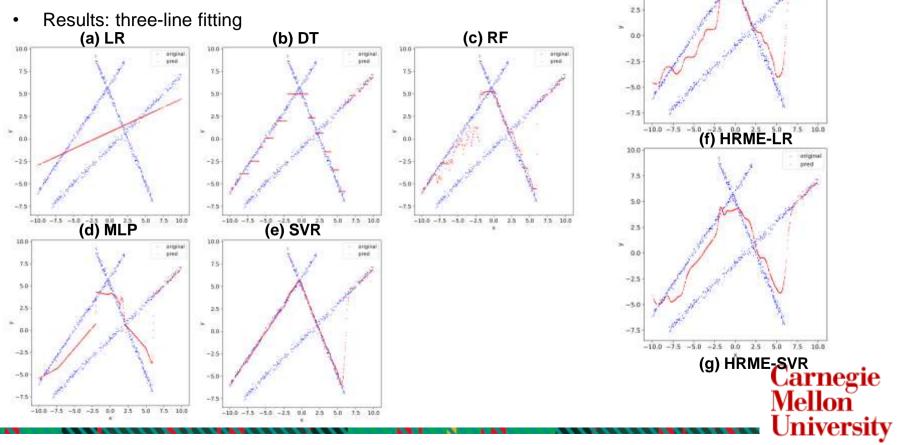
Results

DATASET	METRIC	LR	SVR	DT	RF	HME	MLP	HRME	
								LR	SVR
3-LINES	MAE	3.352	2.006	2.224	2.131		1.960	2.337	2.250
	RMSE	4.104	3.173	3.291	3.072	—	2.795	2.885	2.859
Housing	MAE	3.651	3.498	2.537	2.103	4.170	6.711	2.682	3.266
	RMSE	4.911	5.126	3.665	3.043	5.610 ²	8.535	3.857	4.376
CONCRETE	MAE	8.088	8.013	4.919	3.436	-	5.394	4.121	4.020
	RMSE	10.204	10.772	8.000	4.806	6.250 ³	6.594	5.664	5.609
ССРР	MAE	3.601	2.746	2.941	2.383	_	4.013	2.965	2.712
	RMSE	4.578	3.856	4.151	3.409	4.100 4	5.078	3.951	3.805
ENERGY	MAE	52.075	43.141	43.996	52.002		40.521	42.121	40.009
	RMSE	93.564	101.267	99.654	95.558		88.191	89.203	87.022
Kin40k	MAE	0.806	0.092	0.592	0.433	-	0.237	0.150	0.071
	RMSE	0.996	0.161	0.773	0.548	0.230 5	0.312	0.212	0.114

1. 3. 1

TABLE II: Experiment Results

Carnegie Mellon University



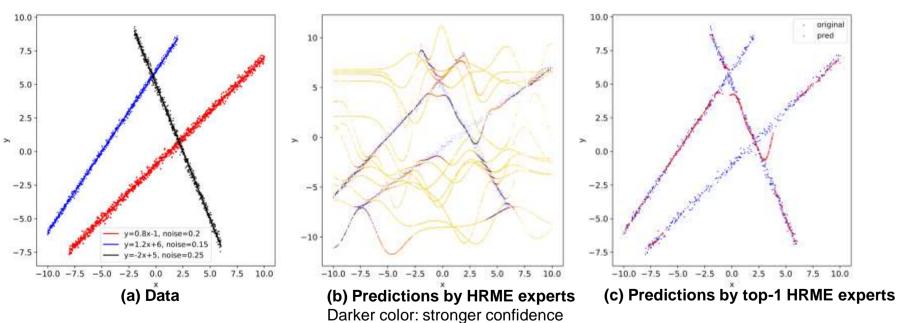
10.0

7.5

5.0

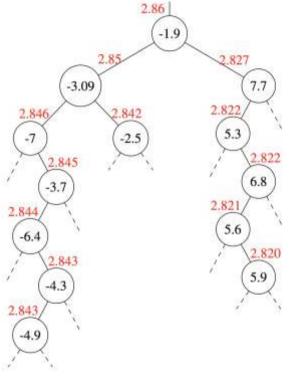
original

gred



[•] Results: three-line fitting by experts in HRME

Results: HRME tree on three-line data



HRME tree Node: partition threshold Edge: regression error

- Motivation & Background
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

Conclusion

- Hierarchical routing mixture of experts (HRME) addresses the difficulty of data partitioning and expert assigning in conventional regression models
- HRME captures natural data hierarchy and routes data to simple regressors for effective predictions
- Probabilistic framework + recursive Expectation-Maximization (EM) algorithm to optimize both tree structure and expert models
- Comprehensive experiments validate effectiveness
- HRME properties
 - Convergence: $\mathcal{O}(k^{-2/d})$ in the L_p norm
 - Complexity: $\mathcal{O}(n^3 \epsilon^d + dn^2 \epsilon^{d/2})$
 - Consistency: yes
 - Identifiability: yes

Carnegie Mellon

University

References

[1] Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty years of mixture of experts. *IEEE Transactions on Neural Networks and Learning Systems*, *23*(8), 1177-1193.

[2] Zhao, W., Gao, Y., Memon, S. A., Raj, B., & Singh, R. (2020). Hierarchical routing mixture of experts. *ICPR 2020*.

