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We investigate if amplifying micro facial muscle movements as a pre-
processing phase, by employing Eulerian Video Magnification (EVM), can
boost performance of Local Phase Quantization with Three Orthogonal
Planes (LPQ-TOP) to achieve improved facial MER across various datasets.
In addition, we examine the rate of increase for recognition to determine
if it is uniform across datasets using EVM. Ultimately, we classify the
extracted features using Support Vector Machines (SVM). We evaluate
and compare the performance with various methods on seven different
datasets namely CASME, CAS(ME)2, CASME2, SMIC-HS, SMIC-VIS, SMIC-
NIR and SAMM. The results obtained demonstrate that EVM can enhance
LPQ-TOP to achieve improved recognition accuracy.

OBJECTIVE

• To present an extensive analysis to demonstrate the effectiveness of
employing EVM with LPQ-TOP on a variety of datasets.

• To provide an insight on the competency of LPQ-TOP as micro facial
feature extraction technique.

• Demonstrate the robustness of our approach by adopting more
datasets than any other experiment.

METHODOLOGY

Fig 2. Happy Expression[25], before(left) and after(right) 
magnification. (©Xiaolan Fu)

Fig 1. Micro expression recognition framework

• The methodology adopted for our work is demonstrated in Figure 1.
• It includes the following steps: pre-processing, feature extraction and feature classification.
• We have augmented a video magnification method and LPQ-TOP [16][22] feature extraction

technique.
• The magnification factor α is set to 26 in equation 1

(1)

• LPQ-TOP method is used for extracting features from the magnified frames.
• Calculates four frequency points for each pixel.
• Determines phase information using binary quantizer.
• Builds histogram to represent the resulting codes.
• The final feature vector obtained is used to train a Support Vector Machine (SVM) [4].
• SVM is said to be effective for small datasets with higher dimensions hence, this classification

method was chosen for our work as the datasets and method employed match these criteria.
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RESULTS

• The result obtained after applying magnification process is shown in Figure 2.
• An enhancement in recognition performance after magnification is evident, however there is an

absence of uniformity on the rate of enhancement on all seven datasets.
• An increase of 13.34% in the accuracy has been observed for the CASME2 dataset after

introducing magnification which is a significant rise.
• The rate of increase using SMIC-NIR and SMIC-VIS differs by approximately 1% i.e., the method

has uniform increase in recognition accuracy on these two SMIC datasets.
• An average increase in recognition accuracy of ~6.14% across all datasets is achieved using the

novel framework.
• A significantly improved recognition accuracy of 88.2% is obtained for CASME and is the highest

accuracy achieved using the LPQ-TOP with EVM compared to all other datasets.
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CASME 83.45 88.2 4.75

CASME2 61.16  [18] 74.5 13.34

CAS(ME)2 63.6 68.5 4.9

SAMM 70.4 72.07 1.67

SMIC-VIS 65.6 73.8 8.2

SMIC-NIR 63.3 70.42 7.12

SMIC-HS 62.8 65.8 3

TABLE I. ACCURACY %  USING LPQ-TOP

Dataset Our Work Other Authors

LPQ-TOP + 
mag

Accuracy % Method

CASME 88.2 80.2 MMPTR [26]

CASME2 74.5

78.14 HIGO + mag [27]

63.97 HOG + mag [27]

60.73 LBP-TOP + mag [27]

CAS(ME)2 68.5 64.07 NMP [31]

SAMM 72.07 70.18 CNN [32]

SMIC-VIS 73.8

81.69 HIGO + mag [27]

77.46 HOG + mag [27]

78.87 LBP-TOP + mag [27]

SMIC-NIR 70.42

67.61 HIGO + mag [27]

64.79 HOG + mag [27]

67.61 LBP-TOP + mag [27]

SMIC-HS 65.8

68.29 HIGO + mag [27]

61.59 HOG + mag [27]

60.37 LBP-TOP + mag [27]

TABLE II. ACCURACY %  COMPARISON FOR CASME, CASME2, CAS(ME)2, 
SAMM & SMIC

CONCLUSION

• LPQ-TOP when fused with EVM shows an impressive performance
boost on some datasets.

• The results show an impressive average increase of ~6.14% but
lacks an orderly increase of recognition accuracy.

• Magnification helped LPQ-TOP to efficiently extract required facial
micro features.

• This work has successfully realized performance comparison
between LPQ-TOP (with and without EVM) and various other
approaches.

• Evidently LPQ-TOP technique is as competent as other hand-crafted
methods.

• The goal of performing this work is to provide a novel pipeline for
solving three class MER problem.
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