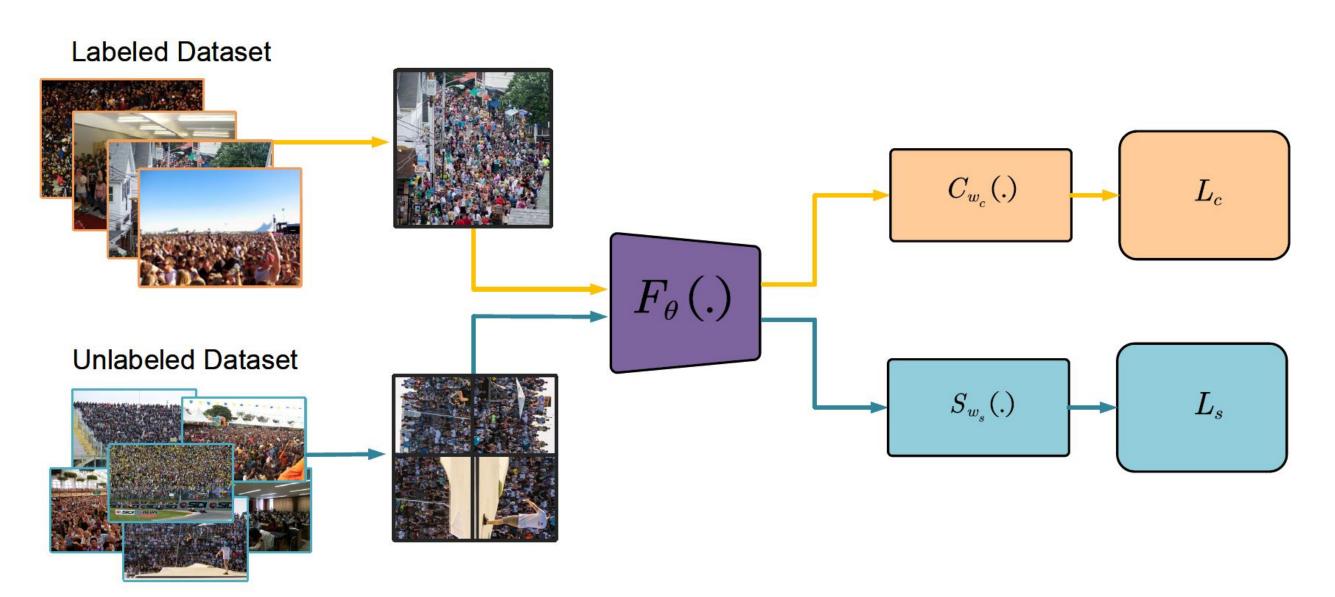

Learning from Web Data: Improving Crowd Counting via Semi-Supervised Learning Tao Peng, Pengfei Zhu Tianjin University, Tianjin, China

Auxiliary Task

- **Task 1:** Equalizing The Rotated Image
- Task 2: Summing Sub-images
- Task 3: Summing Rotated Sub-images


Baseline: MCNN, CSRNet, BL

Main Idea

Deep neural networks need large-scale dataset for better training and evaluation. However collecting and annotating largescale crowd counting dataset is expensive and challenging. In this work, we exploit unlabeled web crowd image and propose an multitask framework for boosting crowd counting baseline method through semi-supervision. Based on the observation that the rotation and splitting operations will not change the image crowd counting number, we designed three auxiliary tasks to improve the quality of feature extractors and our framework can be easily extended to other crowd counting baselines. Experiments shows that our semi-supervised learning framework outperforms previous baselines on UCF-QNRF dataset and ShanghaiTech dataset.

Framework

For self-supervised approach, unlabeled data is a subset of original dataset, but our unlabeled data is collected from Internet and does not intersect with original dataset. This is a more flexible and realistic setting, so our approach can be called semi-supervised auxiliary task learning. Finally in our case, we design a multi-task framework where we improve the crowd counting network using joint supervision from the supervised counting task and an semisupervised pretext task,

Experiment on Public dataset:

We made a review on the public datasets. We select BL as the baseline, use Task3 as auxiliary task, and set the Ratio to 1:2. We evaluate our method compared with 12 state-of-the-art methods on UCF-QNRF and ShanghaiTech.

Method	UCF-QNRF		ShanghaiTechA		ShanghaiTechB		Journal/Venue & Year	
	MAE	RMSE	MAE	RMSE	MAE	RMSE	Journal/venue & real	
MCNN [9]	277.0	426.0	110.2	173.2	26.4	41.3	2016–CVPR	
CMTL [29]	252.0	514.0	101.3	152.4	20.0	31.1	2017–AVSS	
Switching CNN [30]	228.0	445.0	90.4	135.0	21.6	33.4	2017–CVPR	
L2R [23]	_	—	72.0	106.6	13.7	21.4	2018-CVPR	
CSRNet [31]	120.3	208.5	68.2	115.0	10.6	16.0	2019–CVPR	
TEDnet [40]	113.0	188.0	64.2	109.1	8.2	12.8	2019–CVPR	
CAN [41]	107.0	183.0	62.3	100.0	7.8	12.2	2020–AAAI	
DUBNet [42]	105.6	180.5	64.6	106.8	7.7	12.5	2019–ICCV	
S-DCNet [43]	104.4	176.1	58.3	95.0	6.7	10.7	2019–CVPR	
SFCN [14]	102.0	171.4	64.8	107.5	7.6	13	2019–ICCV	
DSSINet [32]	99.1	159.2	60.6	96.1	6.9	10.3	2019–ICCV	
BL [33]	88.7	154.8	62.8	101.8	7.7	12.7	2019–ICCV	
Our*	83.2	145.8	60.7	94.6	7.1	10.9	2020	

We experimented with the impact of different ratios of unlabeled data on the overall model. We use BL model for baseline and Task3. All experiments were performed on UCF-QNRF dataset.

Method	Ratio	Learning Paradigm	MAE	MSE
BL	1:1	supervised	88.7	154.8
BL^{self}	1:0	self-supervised	84.1	151.3
BL_1^{semi}	1:1	semi-supervised	84.6	150.0
BL_2^{semi}	1:2	semi-supervised	83.2	145.8
BL_3^{semi}	1:4	semi-supervised	87.7	159.6
BL_4^{semi}	1:8	semi-supervised	102.3	168.5

Quantitative Results

