Proximity Isolation Forests

Antonella Mensi ${ }^{1}$, Manuele Bicego ${ }^{1}$, David M.J. Tax ${ }^{2}$
${ }^{1}$ University of Verona, Italy (antonella.mensi@univr.it)
${ }^{2}$ TU Delft, The Netherlands

Motivation

- Isolation Forests: successful method for outlier detection based on Random Forests.
- Isolation Forests+extensions work only with vectorial data.
- Several outlier detection problems deal with non-vectorial data such as: sequences, images, etc.

No RF-based method for outlier detection exists!
-There exist many distance measures for non-vectorial data.

- We can work directly with non-vectorial data by employing pairwise distances.

Proposal: Proximity Isolation Forest: RF-based methodology for outlier detection. It works with all types of data for which a distance measure is defined.

Proximity Isolation Forests (PIF)

Proximity Isolation Tree (PIT): recursively built on a distance matrix \mathbf{D} containing pairwise distances.

- Two ways to traverse a node n in a PIT:

- Five ways to split a node n in a PIT:
-R-1P, R-2P: random selection of a pair of prototype and threshold (or prototypes).
$-\mathrm{O}-1 \mathrm{PS}{ }_{D}, \mathrm{O}-2 \mathrm{PS}_{D}, \mathrm{O}-2 \mathrm{PS}_{P}$: Choice of the best pair based on an optimization function.

How to optimize the split choice?

1. Isolation of outliers \longrightarrow decrease in variance.
2. No features \longrightarrow no variance.
3. We measure the scatter \longrightarrow sparseness of the distance values.

Results

- 8 datasets. 10 repetitions per experiment. Accuracy measure: AUC.
- Comparison with 6 distance and densitybased methods.
PIF: Guideline-based and best parametrizations.
(More details and results in the paper.)

| Dataset | NNd | KNNd | KNNd-Av LOF | LOF-Range | K-Centers | PIF | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DelftPedestrians | 0.524 | 0.567 | 0.534 | 0.553 | 0.579 | 0.629 | $\mathbf{0 . 7 9 9}(0.799)$ |
| DelftGestures | 0.419 | 0.440 | 0.388 | 0.547 | 0.579 | 0.643 | $\mathbf{0 . 9 5 5}(0.976)$ |
| WoodyPlants | 0.451 | 0.390 | 0.383 | 0.659 | 0.639 | 0.714 | $\mathbf{0 . 9 1 0}(0.930)$ |
| Pendigits | 0.505 | 0.490 | 0.497 | 0.492 | 0.466 | 0.600 | $\mathbf{0 . 7 4 5}(0.755)$ |
| Zongker | 0.566 | 0.476 | 0.422 | 0.564 | 0.514 | 0.752 | $\mathbf{0 . 7 9 6}(0.811)$ |
| ChickenPieces | 0.462 | 0.462 | 0.425 | 0.456 | 0.444 | NaN | $\mathbf{0 . 8 2 5}(0.846)$ |
| Protein | 0.413 | 0.820 | 0.798 | 0.922 | 0.919 | 0.861 | $\mathbf{0 . 9 8 4}(0.985)$ |
| Flowcyto | 0.498 | 0.448 | 0.462 | 0.619 | 0.623 | 0.629 | $\mathbf{0 . 7 0 8}(0.737)$ |
| Average | 0.479 | 0.524 | 0.501 | 0.602 | 0.596 | 0.688 | $\mathbf{0 . 8 4 0}(0.855)$ |

