

Gait Recognition using Multi-Scale Partial Representation Transformation with Capsules

¹Alireza Sepas-Moghaddam, ²Saeed Ghorbani, ²Nikolaus F. Troje, and ¹Ali Etemad

¹Department of Electrical and Computer Engineering & Ingenuity Labs, Queen's University, Kingston, Ontario, Canada ²Biomotion Lab, Centre for Vision Research, York University, Toronto ON, Canada

1. Gait Recognition

Gait data, acquired from an individual's body movement during walking, can provide important identity information.

- Due to the unconstrained nature of gait recognition, gait data can be captured from different viewpoints, so some parts of the body can be hidden from one view to another.
- The appearance of individuals can also be different due to variations in clothing, for instance wearing a coat or hat, or carrying a handbag or backpack.

2. Proposed Solution

TABLE I	
CASIA-B GAIT RECOGNITION RESULTS UNDER NORMAL (NM) WALKING CONDITIONS.	

4. Results

Me	ethod		View											
Name	Year	Venue	0°	18°	36°	54°	72°	90°	108°	126°	144°	162°	180°	Mean
CNN-3D [2]	2017	T-PAMI	87.1	93.2	97.0	94.6	90.2	88.3	91.1	93.8	96.5	96.0	85.7	92.1
CNN-Ens. [2]	2017	T-PAMI	88.7	95.1	98.2	96.4	94.1	91.5	93.9	97.5	98.4	95.8	85.6	94.1
MGAN [3]	2019	T-IFS		-	-	84.2	-	72.3	-	83.0	-	-		79.8
EV-Gait [4]	2019	CVPR	77.3	89.3	94.0	91.8	92.3	96.2	91.8	91.8	91.4	87.8	85.7	89.9
Gait-Joint [5]	2019	PR	75.6	91.3	91.2	92.9	92.5	91.0	91.8	93.8	92.9	94.1	81.9	89.9
GaitSet [1]	2019	AAAI	90.8	97.9	99.4	96.9	93.6	91.7	95.0	97.8	98.9	96.8	85.8	95.0
GaitNet-1 [6]	2019	CVPR	91.2	-	-	95.6	-	92.6	-	96.0	-	-	-	93.9
GaitNet-2 [7]	2019	arXiv	93.1	92.6	90.8	92.4	87.6	95.1	94.2	95.8	92.6	90.4	90.2	92.3
Ours	-	-	91.8	98.3	99.0	98.0	94.1	92.8	96.3	98.1	98.4	96.2	89.2	95.7

	TABLE II			
CASIA-B GAIT RECOGNITION	RESULTS UNDER	CARRIED BAGS	s (BG) CONDITIONS.	

Me	ethod		View											
Name	Year	Venue	0°	18°	36°	54°	72°	90°	108°	126°	144°	162°	180°	Mean
CNN-LB [2]	2017	T-PAMI	64.2	80.6	82.7	76.9	64.8	63.1	68	76.9	82.2	75.4	61.3	72.4
MGAN [3]	2019	T-IFS	48.5	58.5	59.7	58	53.7	49.8	54	61.3	59.5	55.9	43.1	54.7
GaitSet [1]	2019	AAAI	83.8	91.2	91.8	88.8	83.3	81.0	84.1	90.0	92.2	94.4	79	87.2
GaitNet-1 [6]	2019	CVPR	83.0	-	-	86.0	-	74.8	-	85.8	-	-	-	82.6
GaitNet-2 [7]	2019	arXiv	88.8	88.7	88.7	94.3	85.4	92.7	91.1	92.6	84.9	84.4	86.7	88.9
Ours		-	87.3	93.7	94.8	93.1	88.1	84.5	88.8	93.5	96.3	93.3	83.9	90.7

TABLE III CASIA-B GAIT RECOGNITION RESULTS UNDER DIFFERENT CLOTHING (CL) CONDITIONS.

we propose a novel deep network, learning to transfer partial gait representations using capsules to obtain more discriminative gait features robust to both viewing and appearance changes.

1- Partial feature extraction: We first extract partial features of gait-maps using GaitSet[1] method involving multiple convolutional, pooling, and fully connected layers.

2- Recurrent learning: We then transform the features extracted by the previous layer using Bi-GRU to a more discriminating manifold by exploring the spatial correlations between the horizontal strips in the feature maps.

3- Capsule attention: We learn deeper part-whole relationships between the strips and then selectively assign more weights to the more discriminative features and explains away misleading factors.

4- Classification: We performs classification using a softmax activation function.

Methor

Name	Year	Venue	0°	18°	36°	54°	72°	90°	108°	126°	144°	162°	180°	Mean
CNN-LB [2]	2017	T-PAMI	37.7	57.2	66.6	61.1	55.2	54.6	55.2	59.1	58.9	48.8	39.4	54.0
MGAN [3]	2019	T-IFS	23.1	34.5	36.3	33.3	32.9	32.7	34.2	37.6	33.7	26.7	21.0	31.5
GaitSet [1]	2019	AAAI	61.4	75.4	80.7	77.3	72.1	70.1	71.5	73.5	73.5	68.4	50	70.4
GaitNet-1 [6]	2019	CVPR	42.1	-	52	70.7	<u> </u>	70.6	2	69.4	-	4		63.2
GaitNet-2 [7]	2019	arXiv	50.1	60.7	72.4	72.1	74.6	78.4	70.3	68.2	53.5	44.1	40.8	62.3
Ours	-	-	63.4	77.3	80.1	79.4	72.4	69.8	71.2	73.8	75.5	71.7	62.0	72.4

TA	ABLE IV	
OU-MVLP GAIT	RECOGNITION	RESULTS.

Me	thod		1				
Name	Year	Venue	0°	30°	60°	90°	Mean
GEI NET [8]	2016	ICB	15.7	41	39.7	39.5	34.0
CNN-LB [2]	2017	T-PAMI	14.2	32.7	32.3	34.6	28.5
DigGAN [9]	2018	arXiv	30.8	43.6	41.3	42.5	39.6
Gait-Set [1]	2019	AAAI	77.7	86.9	85.3	83.5	83.4
Ours	-		78.3	88.8	85.7	85.1	84.5

Our model obtains state-of-the-art values for gait recognition on two gait datasets.

5. Feature Space Exploration

our solution (left) creates denser clusters, thus the subjects are more easily separable ٠ in our feature spaces, compared to global feature representation (right).

6. References

[1] H. Chao, Y. He, J. Zhang, and J. Feng, "Gaitset: Regarding gait as a set for cross-view gait recognition," in AAAI, 2019.

[2] Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, "A comprehensive study on cross-view gait based human identification with deep CNNs," IEEE T-PAMI, vol. 39, no. 2, 2017.

[3] Y. He, J. Zhang, H. Shan, and L. Wang, "Multi-task GANs for view specific feature learning in gait recognition," IEEE TIFS, vol. 14, no. 1, pp. 102–113, 2019.

[4] Y. Wang, B. Du, Y. Shen, K. Wu, G. Zhao, J. Sun, and H. Wen, "EVGait: Event-based robust gait recognition using dynamic vision sensors," in CVPR, 2019.

[5] S. Yu, R. Liao, W. An, H. Chen, E. Garc'ıa, Y. Huang, and N. Poh, "Gaitnet: An end-to-end network for gait based human identification," Pattern Recognition, vol. 96, no. 1, pp. 1–11, 2019.

[6] Z. Zhang, L. Tran, X. Yin, Y. Atoum, X. Liu, J. Wan, and N. Wang, "Gait recognition via disentangled representation learning," in CVPR, 2019.

[7] Z. Zhang, L. Tran, F. Liu, and X. Liu, "On learning disentangled representations for gait recognition," arXiv:1909.03051, 2019.

[8] K. Shiraga, Y. Makihara, D. Muramatsu, T. Echigo, and Y. Yagi, "GEINet: View-invariant gait recognition using a convolutional neural network," in ICB, 2016.

[9] B. Hu, Y. Gao, Y. Guan, Y. Long, N. Lane, and T. Ploetz, "Robust cross-view gait identification with evidence: A discriminant gait GAN (DiGGAN) approach on 10000 people," arXiv:1811.10493, 2018.