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Gait data, acquired from an individual's body movement during walking, can

provide important identity information.
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Gait Recognition using Multi-Scale Partial 

Representation Transformation with Capsules

2. Proposed Solution

5. Feature Space Exploration

• Due to the unconstrained nature of gait recognition, gait data can be captured

from different viewpoints, so some parts of the body can be hidden from one view

to another.

• The appearance of individuals can also be different due to variations in clothing,

for instance wearing a coat or hat, or carrying a handbag or backpack.

we propose a novel deep network, learning to transfer partial gait representations

using capsules to obtain more discriminative gait features robust to both viewing

and appearance changes.

1- Partial feature extraction: We first extract partial features of gait-maps using

GaitSet[1] method involving multiple convolutional, pooling, and fully connected

layers.

2- Recurrent learning: We then transform the features extracted by the previous

layer using Bi-GRU to a more discriminating manifold by exploring the spatial

correlations between the horizontal strips in the feature maps.

3- Capsule attention: We learn deeper part-whole relationships between the strips

and then selectively assign more weights to the more discriminative features and

explains away misleading factors.

4- Classification: We performs classification using a softmax activation function.

CASIA-B dataset:

124 subjects in 3 different walking conditions and 11 different view angles

CASIA-B dataset:

10,307 subjects in 2 different sessions and 14 different view angles

• our solution (left) creates denser clusters, thus the subjects are more easily separable 
in our feature spaces, compared to global feature representation (right).

• Our model obtains state-of-the-art values for gait recognition on two gait datasets.


