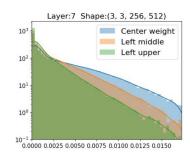
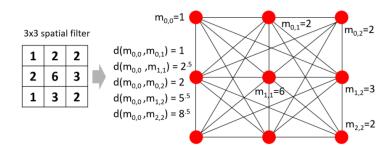
LOCO-Reg

Locality-Promoting Representation Learning


Johannes Schneider, University of Liechtenstein

Weights of 3x3 filters in Conv. Nets are larger near the center

3x3 Filter


S(mall)	M(ediu m)	S
М	Larg e	М
S	М	S

Architecture
VGG16
ResNet50
InceptionV3
Xception
MobileNet

Explainable with Model from Physics

Maximize feature cohesion (to get robust features) Activation, weight = Mass Cohesion = Gravitational Force

Theorem says: Center weights should be larger

Theorem 1. For any feature strength distribution $m' \leq m_c, m_{co}, m_n < (1+\epsilon)m'$ with $\epsilon \in [0,0.675[$, the cohesion F_{tot} of the feature is increased most by increasing m_c , and more by increasing any $m_n \in M_n$ than any $m_{co} \in M_{co}$ for arbitrary m', center $m_c = m_{1,1}$, direct neighbors $M_n := \{m_{1,0}, m_{0,1}, m_{2,1}, m_{1,2}\}$ and corners $M_{co} := \{m_{0,0}, m_{2,0}, m_{2,2}, m_{0,2}\}$ (Figure 3).

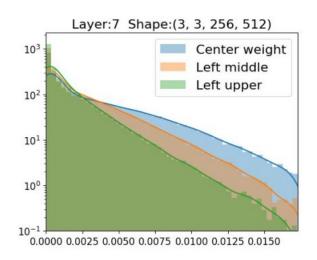
Better performance if L2-Reguralize center weights less

Standard L2-reg. reduces central weights too much LOCO-Reg: Regularize center weights less

Base L2 Regularization Constant

LOCO- Regularization weigh											
γ>η	η > 1	γ>η									
η > 1	1	η > 1									
γ > η	η > 1	γ>η									

Dataset	Architecture	for all	AV	. Accuracy	for differ	ent A	Best
			.00025	.0005	.001	.002	Acc.
cifar10	MobileNet	(1,1)	.8611	.8686	.8688	.8647	.8688
cifar10	MobileNet	(1.4, 1.56)		.8701°	.8714	.8657	.8714
cifar10	MobileNet	(1.8, 2.13)	.8619	.8692	.8721"	.8668*	.8721*
cifar10	ResNet	(1,1)	.9191	.9227	.9236	.9222	.9236
cifar10	ResNet	(1.4, 1.56)	.921	.9253°	.9242	.9224	.9253°
cifar10	ResNet	(1.8, 2.13)	.9186	.9244*	.9237	.9236	.9244*
cifar10	VGG	(1,1)	.8754	.8761	.882	.8858	.8858
cifar10	VGG	(1.4, 1.56)	.8722	.884 **	.8858**	.8869	.8869
cifar10	VGG	(1.8,2.13)	.8808**	.8816*	.8875***	.8884°	.8884*
cifar100	MobileNet	(1,1)	.5926	.6116	.6182	.6155	.6182
cifar100	MobileNet	(1.4, 1.56)	.5941	.6124	.6182	.6149	.6182
cifar100	MobileNet	(1.8,2.13)	.5935	.6144	.6199	.6184*	.6199
cifar100	ResNet	(1,1)	.702	.71	.7156	.7124	.7156
cifar100	ResNet	(1.4, 1.56)	.702	.7129°	.7163	.7146	.7163
cifar100	ResNet	(1.8, 2.13)	.7022	.7116	.7198**	.7142	.7198**
cifar100	VGG	(1,1)	.6415	.6551	.6597	.6599	.6599
cifar100	VGG	(1.4, 1.56)	.6432	.6583*	.6665***	.6645*	.6665***
cifar100	VGG	(1.8, 2.13)	.6449°	.6629***	.6653**	.6671***	.6671***
fashion	MobileNet	(1,1)	.9403	.9402	.939	.9369	.9403
fashion	MobileNet	(1.4, 1.56)	.9398	.9406	.9385	.9372	.9406
fashion	MobileNet	(1.8, 2.13)	.9402	.9408	.9398	.9371	.9408
fashion	ResNet	(1,1)	.9501	.9504	.9494	.9492	.9504
fashion	ResNet	(1.4, 1.56)	.9496	.951	.9506*	.9489	.951
fashion	ResNet	(1.8,2.13)	.9509*	.9505	.9515*	.9494	.9515*
fashion	VGG	(1,1)	.9404	.942	.9417	.9426	.9426
fashion	VGG	(1.4,1.56)	.941	.9414	.9419	.9436*	.9436*
fashion	VGG	(1.8, 2.13)	.9423	.9417	.9436°	.9437°	.9437*


Weights in Convolutional Networks

... are not of the same magnitude
On average weights near the center are larger

Architecture
VGG16
ResNet50
InceptionV3
Xception
MobileNet

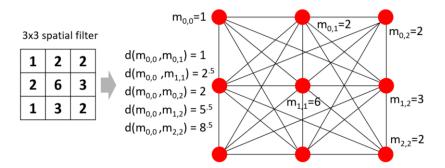
3x3 Filter

S(mall)	M(edium)	S		
M	Large	М		
S	М	S		

Distribution in log-scale of absolute weights of 3x3 filters at center, left middle and left upper

Let us think about that...

Filter = common pattern in feature maps


Red or violet? Red preferred because they have a large center

⇒ More robust (to noise, variation)

					3x3	spatial	filter								
					1 2	6	3	?							
					1	3	2								
0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0
0	0	1	0	0	1	2	2	1	0	2	3	1	1	1	0
1	0	0	0	1	2	6	3	1	1	2	5	1	2	1	0
0	0	0	0	1	1	3	2	2	3	2	3	2	0	0	0
0	1	0	0	0	1	2	2	2	2	3	2	2	1	0	0
0	0	0	1	0	1	1	1	2	3	3	2	1	1	0	0

Model from Physics

- We want maximal feature cohesion
- Activation, weight = Mass
- Cohesion = Gravitational Force

Theorem 1. For any feature strength distribution $m' \leq m_c, m_{co}, m_n < (1+\epsilon)m'$ with $\epsilon \in [0, 0.675[$, the cohesion F_{tot} of the feature is increased most by increasing m_c , and more by increasing any $m_n \in M_n$ than any $m_{co} \in M_{co}$ for arbitrary m', center $m_c = m_{1,1}$, direct neighbors $M_n := \{m_{1,0}, m_{0,1}, m_{2,1}, m_{1,2}\}$ and corners $M_{co} := \{m_{0,0}, m_{2,0}, m_{2,2}, m_{0,2}\}$ (Figure 3).

Implementation: LOCO-Reg

Standard L2-regularization pushes all weights to be equal

⇒ This reduces central weights too much

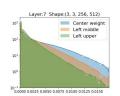
LOCO-Reg: Regularize outer weights more than more central weights

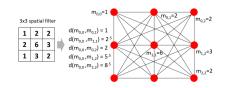
Base L2 Regularization Constant

λ *

LOCO- Regularization weights

γ>η	η > 1	γ > η
η > 1	1	η > 1
γ > η	η > 1	γ > η


Dataset	Architecture	(η, γ)	.00025	.0005	.001	.002	Acc.
cifar10	MobileNet	(1,1)	.8611	.8686	.8688	.8647	.8688
cifar10	MobileNet	(1.4,1.56)	.8618	.8701*	.8714	.8657	.8714
cifar10	MobileNet	(1.8, 2.13)	.8619	.8692	.8721*	.8668*	.8721*
cifar10	ResNet	(1,1)	.9191	.9227	.9236	.9222	.9236
cifar10	ResNet	(1.4,1.56)	.921	.9253*	.9242	.9224	.9253*
cifar10	ResNet	(1.8, 2.13)	.9186	.9244*	.9237	.9236	.9244*
cifar10	VGG	(1,1)	.8754	.8761	.882	.8858	.8858
cifar10	VGG	(1.4,1.56)	.8722	.884 **	.8858**	.8869	.8869
cifar10	VGG	(1.8,2.13)	.8808**	.8816*	.8875***	.8884*	.8884*
cifar100	MobileNet	(1,1)	.5926	.6116	.6182	.6155	.6182
cifar100	MobileNet	(1.4,1.56)	.5941	.6124	.6182	.6149	.6182
cifar100	MobileNet	(1.8,2.13)	.5935	.6144	.6199	.6184*	.6199
cifar100	ResNet	(1,1)	.702	.71	.7156	.7124	.7156
cifar100	ResNet	(1.4,1.56)	.702	.7129*	.7163	.7146	.7163
cifar100	ResNet	(1.8,2.13)	.7022	.7116	.7198**	.7142	.7198**
cifar100	VGG	(1,1)	.6415	.6551	.6597	.6599	.6599
cifar100	VGG	(1.4, 1.56)	.6432	.6583*	.6665***	.6645*	.6665***
cifar100	VGG	(1.8, 2.13)	.6449*	.6629***	.6653**	.6671***	.6671***
fashion	MobileNet	(1,1)	.9403	.9402	.939	.9369	.9403
fashion	MobileNet	(1.4,1.56)	.9398	.9406	.9385	.9372	.9406
fashion	MobileNet	(1.8,2.13)	.9402	.9408	.9398	.9371	.9408
fashion	ResNet	(1,1)	.9501	.9504	.9494	.9492	.9504
fashion	ResNet	(1.4, 1.56)	.9496	.951	.9506*	.9489	.951
fashion	ResNet	(1.8,2.13)	.9509*	.9505	.9515*	.9494	.9515*
fashion	VGG	(1,1)	.9404	.942	.9417	.9426	.9426
fashion	VGG	(1.4,1.56)	.941	.9414	.9419	.9436*	.9436*
fashion	VGG	(1.8,2.13)	.9423	.9417	.9436*	.9437*	.9437*


THANKS

S(mall)	M(edium)	S		
М	Large	м		
S	М	S		

0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0
0	0	1	0	0	1	2	2	1	0	2	3	1	1	1	0
1	0	0	0	1	2	6	3	1	1	2	5	1	2	1	0
0	0	0	0	1	1	3	2	2	3	2	3	2	0	0	0
0	1	0	0	0	1	2	2	2	2	3	2	2	1	0	0
0	0	0	1	0	1	1	1	2	3	3	2	1	1	0	0

