

Joan Serrat, Idoia Ruiz Computer Vision Center, Universitat Autònoma de Barcelona

ORDINAL CLASSIFICATION

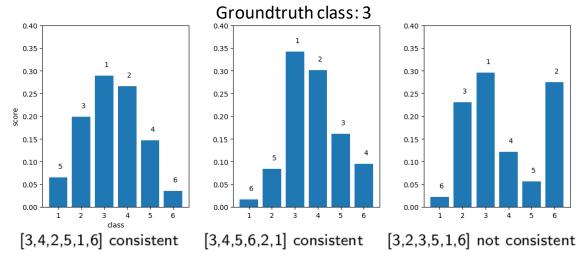
Predicted

ranking

- Ordinal classification: Categories follow a relative order.
- Distance among categories can be unknown, e.g. What is the distance between a professional photo and a flawed one? Or between predicting a building destruction degree as destroyed or severe damage?

Idea

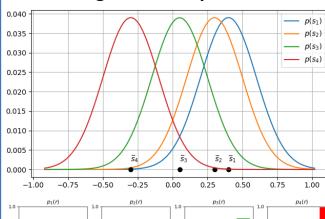
- Predict a ranking of all the ordinal classes, from most to least probable
- We propose a new ordinal classification loss that does not need to define a distance between classes. It compares
 predicted rankings to the groundtruth
- We enforce both the accuracy and consistency of prediction: the order of the classes must follow a unimodal distribution, which mode is the ground truth class.

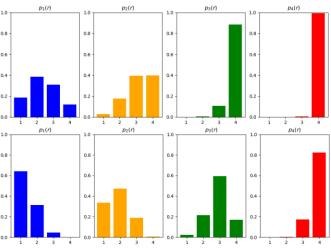


Joan Serrat, Idoia Ruiz
Computer Vision Center Ur

METHOD

From logits to rank probabilities





Let C = 4 be the number of classes and $\bar{s}_i, \ i \in [1,4]$ their scores, approximated as the mean of a Gaussian distribution with $\sigma = 0.2$ $p(s_i) = \mathcal{N}(s_i|\bar{s}_i, \ \sigma^2)$

 $P = [p_j(r)], \ j, r \in [1, C]$ Probability for each scores to have each possible rank.

Same after 50 iterations of Sinkhorn transform.

• One configuration loss

Valid ground truth rankings:

$$c_l = [l, l+1, l-1, l+2, l-2 \ldots]$$

where l is the true label

$$L_{\sf oc}(P,l) = \sum_{r=1}^{C} \mathsf{NLL}(\;[\;p_j(r)\;]_{j=1\dots C}, \mathsf{OneHot}(c_l[r])\;)$$

All configurations loss

Valid ground truth rankings: The true label / is the mode and the sourronding classes have decreasing scores as in a Gaussian distribution centered at the true class.

$$L_{\mathsf{ac}}(P, l) = \min_{v \in V(l)} L_{\mathsf{oc}}(P, v)$$

Valid pairs loss

Similar to *All configurations* but computation is faster.

$$L_{\mathsf{vp}}(P, l) = -\sum_{\substack{i < j \le l, a > b \\ l \le i < j, a < b}} \log p_i(a) \, p_j(b)$$

Joan Serrat, Idoia Ruiz

AESTHETICS RATING: SCHIFFANELLA'S IMAGEAESTHETICS

unacceptable 0.3% flawed 4.3% ordinary 72.4%

professional 22.0%

Category	EMD	SORD	Valid pairs	
	Acc. MAE	Acc. MAE	Acc. MAE	
Nature	71.96* 0.342*	73.59 [†] 0.271 [†]	74.77 0.261	
	72.06* 0.317*	71.04* 0.381*	74.95 0.260	
Animals	66.98* 0.408*	70.29 [†] 0.308 [†]	69.32 0.318	
	67.17* 0.405*	64.76* 0.555*	70.07 0.310	
Urban	70.89* 0.342*	73.25 0.276	72.98 0.281	
	70.64* 0.303*	67.75* 0.498*	73.41 0.276	
People	67.97* 0.429*	70.59 [†] 0.309 [†]	70.73 0.309	
	67.04* 0.421*	65.50* 0.571*	70.79 0.307	

Top rows VGG16, bottom rows ResNet18. * as computed by our implementation. † as reported in papers. CNN-POR not included because SORD is better in all categories.

AGE ESTIMATION: ADIENCE

0-2 15%

8-12

13%

15-20 10%

25-32

38-43

13%

48-53

60+ 5%

ĺ	EMD	SORD	CNN-POR	One config	All configs.
Accuracy	62.2 † —	59.6 ± 3.6 [†] 48.8 ± 6.9 *	57.4 ± 5.8 [†]	55.3 ± 4.4	55.2 ± 3.7
~	53.0 ± 5.3 *	48.8 \pm 6.9 *	_	59.1 ± 5.2	59.0 ± 3.7
MAE	_	0.49 ± 0.05	0.55 ± 0.08 †	0.57 ± 0.05	0.56 ± 0.05
	0.76 ± 0.09 *	1.31 \pm 0.21 *	_	0.49 ± 0.06	0.49 ± 0.05

† as reported in these papers, single run of the experiment. — not reported or implemented. Odd rows VGG16, even rows ResNet18.

INFORMATION RETRIEVAL: MSRA-MM

very relevant 35.5%

relevant 42%

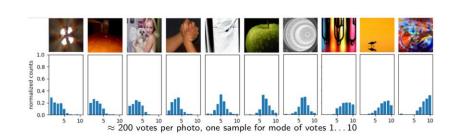
22.5%

Samples for the query "Beach"

Query	CNN	-POR	One config.		All configs.		Valid pairs	
6-	Acc.	MAE	Acc.	MAE	Acc.	MAE	Acc.	MAE
Baby	50.00	0.636	51.26	0.590	51.51	0.592	51.35	0.578
Cat	52.89	0.598	54.07	0.534	54.82	0.536	54.09	0.530
Beach	51.11	0.596	55.30	0.496	54.85	0.503	55.27	0.489
Fish	66.33	0.355	67.48	0.337	66.63	0.337	68.80	0.324

LeNet and mean of 3 runs like in CNN-POR

MOST VOTED CLASS PREDICTION: AVA



New task analogous to mean score regression: predict the the most voted score.

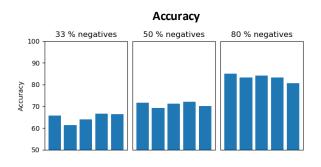
		SOTA	One config.	
Mean score prediction	ρ_s	0.64	0.58	
Most voted score prediction	Acc. %	 :	63.15	
	MAE	_	0.41	

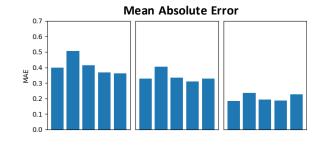
Joan Serrat, Idoia Ruiz Computer Vision Center, Universitat Autònoma de Barcelona

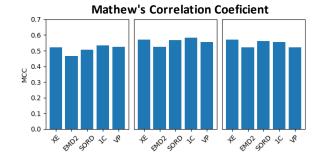
BUILDING DAMAGE ASSESSMENT

No visible damage Moderate damage Severe damage Destroyed

Dots: Groundtruth. Shaded squares: Prediction (moderate damage, severe damage, destroyed)







SUMMARY

- New method for ordinal classification that does not depend on the difference/distance between class labels.
- Three loss functions that compare groundtruth and predicted rankings, and enforce consistency in the prediction.
- We compare our method with SOTA on three different datasets, achieving similar or better results.
- We tackle a new task on image aesthetics assessment, namely, the prediction of the most voted class.
- We present results on a last application, building damage assessment from remote sensing images.