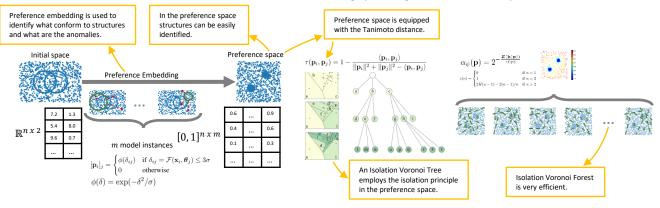

Filippo Leveni* filippo.leveni@polimi.it

Luca Magri* luca.magri@polimi.it Giacomo Boracchi* giacomo.boracchi@polimi.it Cesare Alippi*+ cesare.alippi@polimi.it cesare.alippi@usi.ch


Ground truth IFOR [1] EIFOR [2] LOF [3] PIF Goal: Detect anomalies as those **Our solution:** Preference Isolation Forest samples that deviate from unknown structures or patterns. Preference Embedding Structures/patterns conform to a family

Input (2)Isolation PIF Voronoi Forest Output

(1) **Preference Embedding**: *m* model instances are sampled and preferences of each point are collected. This yields an embedding from $\mathbb{R}^{n \times 2}$ to $[0, 1]^{n \times m}$.

(2) Isolation Voronoi Forest: k nested Voronoi tessellations are built in the preference space using Tanimoto distance τ . A function α_{u} of the average path length is used as anomaly score.

Experiments: PIF outperforms all the alternatives, both on synthetic and real [4] data, where anomaly-detection methods are straightforwardly plugged in the preference space.

	stair3		stai	ir4	starS		star11		rcle3	circle4	circ	es les
	Euclidean				Preference binary				Preference			
	LOF ℓ_2	IFOR	EIFOR	PIF ℓ_2	LOF jac	IFOR	EIFOR	PIF jac	LOF tani	IFOR	EIFOR	PIF
tair3	0.737	0.925	0.920	0.918	0.904	0.885	0.864	0.958	0.815	0.923	0.925	0.971
tair4	0.814	0.889	0.874	0.871	0.849	0.855	0.860	0.941	0.881	0.912	0.908	0.952
tar5	0.771	0.722	0.738	0.788	0.875	0.745	0.769	0.872	0.929	0.761	0.822	0.910
tar11	0.671	0.728	0.727	0.738	0.830	0.739	0.741	0.771	0.900	0.738	0.774	0.796
ircle3	0.761	0.698	0.732	0.779	0.719	0.842	0.854	0.900	0.731	0.854	0.891	0.930
ircle4	0.640	0.641	0.665	0.679	0.827	0.686	0.699	0.860	0.906	0.667	0.720	0.897
ircle5	0.543	0.569	0.570	0.633	0.699	0.597	0.617	0.672	0.823	0.573	0.593	0.780
Aean	0.705	0.739	0.747	0.772	0.815	0.764	0.772	0.853	0.855	0.775	0.805	0.891
	iFor LOF Jaccard	(k=150)		For DF Jaccard (k=250)		Jaccard Jaccard (k=	=350)	Prefe	erence	embedo	ding
0.9 0.0 0.7 0.6 0.5					0.9 20.8 0.7 0.6 0.5				increases the separability between structured and unstructured data.			
0.5	0.2 0.4 fraction of	0.6 f anomalie:	0.8		0.5	fraction	\$ 0.6 of anomalies	0.8				
		air3				-	ircle5					
unbalanced structures					balanced structures							

		8 W 6	986
iohn	sona	biscuith	ookhox

	LOF tani	IFOR	EIFOR	PIF		LOF tani	IFOR	EIFOR	PI
barrsmith	0.969	0.708	0.715	0.944	biscuit	0.976	0.994	0.996	1.0
bonhall	0.918	0.969	0.967	0.949	biscuitbook	1.000	0.987	0.988	1.
bonython	0.978	0.679	0.691	0.954	biscuitbookbox	1.000	0.990	0.989	0.
elderhalla	0.999	0.925	0.909	0.999	boardgame	0.962	0.400	0.304	0.
elderhallb	0.986	0.924	0.943	0.999	book	0.996	1.000	1.000	1.
hartley	0.963	0.749	0.793	0.989	breadcartoychips	0.989	0.978	0.971	0.
johnsona	0.993	0.993	0.993	0.998	breadcube	1.000	0.998	0.998	0.
johnsonb	0.776	0.999	0.998	0.999	breadcubechips	<u>0.999</u>	0.985	0.985	0.
ladysymon	0.847	0.944	0.943	0.997	breadtoy	0.984	0.999	0.998	0.
library	1.000	0.764	0.771	0.998	breadtoycar	0.998	0.933	0.883	0.
napiera	0.975	0.869	0.879	0.983	carchipscube	0.993	0.981	0.966	0.
napierb	0.888	0.931	0.936	0.953	cube	0.999	0.970	0.982	0.
neem	0.985	0.896	0.906	0.996	cubebreadtoychips	0.990	0.962	0.958	0.
nese	0.996	0.888	0.892	0.980	cubechips	1.000	0.995	0.994	1.
oldclassicswing	0.936	0.923	0.943	0.987	cubetoy	1.000	0.997	0.995	1.
physics	0.670	0.858	0.787	1.000	dinobooks	0.887	0.873	0.857	0.
sene	0.997	0.698	0.731	0.988	game	1.000	0.901	0.895	0.
unihouse	0.785	0.998	0.998	<u>0.999</u>	gamebiscuit	1.000	0.985	0.988	1.
unionhouse	0.987	0.639	0.664	0.968	toycubecar	<u>0.973</u>	0.290	0.192	0.
Mean	0.929	0.861	0.866	0.983	Mean	0.987	0.906	0.891	0.
	Homogr	aphies		Fundamental matrices					

[1] F. T. Liu, K. M. Ting, and Z.-H. Zhou, "Isolation for est", in International Conference on Data Mining, IEEE, 2008. pp. 413–422. [2] S. Hariri, M. C. Kind, and R. J. Brunner, "Extended isolation forest", arXiv preprint arXiv:1811.02141, 2018. [3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, "Lof: Identifying density-based local outliers", in International Conference on Management of data, 2000, pp. 93–104.

[4] H. S. Wong, T.-J. Chin, J. Yu, and D. Suter, "Dynamic and hierarchical multi-structure geometric model fitting," in International Conference on Computer Vision, 2011.