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Goal: Detect anomalies as those 
samples that deviate from unknown 
structures or patterns.

① Preference Embedding: 𝑚model instances are 
sampled and preferences of each point are collected. 
This yields an embedding from ℝ𝑛 𝑥 2 to 0, 1 𝑛 𝑥 𝑚.
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Our solution: Preference Isolation Forest
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Experiments: PIF outperforms all the alternatives, both on synthetic and real [4] data, where 
anomaly-detection methods are straightforwardly plugged in the preference space.
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② Isolation Voronoi Forest: 𝑘 nested Voronoi tessellations are built 
in the preference space using Tanimoto distance 𝜏. A function 𝛼𝜓 of 

the average path length is used as anomaly score.
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Structures/patterns 
conform to a family 
of known geometric 
primitives.

Preference embedding is used to 
identify what conform to structures 
and what are the anomalies.

Preference space is equipped 
with the Tanimoto distance.

In the preference space 
structures can be easily 
identified.

An Isolation Voronoi Tree 
employs the isolation principle 
in the preference space.

Isolation Voronoi Forest 
is very efficient.

Preference embedding 
increases the 
separability between 
structured and 
unstructured data.
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