TOTAL ESTIMATION FROM RGB VIDEO: On-line Camera Self-calibration, Non-Rigid Shape and Motion

Institut de Robòtica i Informàtica Industrial
CSIC ${ }^{(1)}$

Problem Statement

Calibration, Motion and Non-Rigid Shape Reconstruction
 Calibration, Motion and non-Rigid Shape Reconstruction

- Given an uncalibrated monocular video where both rigid and non-rigid scenes can be observed.
- We want to jointly and sequentially retrieve the self-calibration of the camera, the 3D non-rigid shape model and the full camera trajectory.
- We propose a Bayesian filtering approach based on a sum-of-Gaussians filter composed of a bank of non-rigid extended Kalman filters. Neither training data nor a calibration pattern are needed.
- Non-Critical Motion Scenarios Hand-held 320×240 camera/endoscope. Rigid and elastic sequences.
- Critical Motion Scenarios

Hand-held 320×240 IEEE1394 camera. Scene and/or calibration is not possible.

- The state of the scene is represented by a 3ndimensional vector, with n the number of points.
- We use an elastic model based on finite elements, defining a compliance matrix \mathbf{C}_{k} to relate the deformation of all points, and a vector of Gaussian acting forces $\Delta \mathrm{f}$. For every frame, the state function is:

$$
\mathbf{y}_{k+1} \equiv \mathbf{y}_{k+1}\left(\mathbf{y}_{k}, \Delta \mathbf{f}\right)=\mathbf{y}_{k}+\mathbf{C}_{k} \Delta \mathbf{f}
$$

- Our model can handle both inelastic and elastic materials, and it is computed every frame.
- A full perspective camera model is assumed

 Kalman Filters (EKF). Every of them, it is estimated by means of a prediction-update strategy.
- The weight coefficients are updated every frame, removing those with low factor $\gamma_{k|k|}^{g}$.
- An overall mean $\hat{\mathbf{x}}_{k \mid k}$ and covariance $\mathbf{P}_{k \mid k}$ for the SoG filter can be considered for visualization:
$\hat{\mathbf{x}}_{k \mid k}=\sum_{g=1}^{G} \gamma_{k \mid k}^{g} \hat{\mathbf{x}}_{k \mid k}^{g}$
$\mathbf{P}_{k \mid k}=\sum_{g=1}^{G} \gamma_{k \mid k}^{g}\left[\mathbf{P}_{k \mid k}^{g}+\left[\hat{\mathbf{x}}_{k \mid k}^{g}-\hat{\mathbf{x}}_{k \mid k}\right]\left[\hat{\mathbf{x}}_{k \mid k}^{g}-\hat{\mathbf{x}}_{k \mid k}\right]^{\top}\right]$

Self-Calibration Non-Rigid SOG

- The state of the camera is represented by a 18-dimensional vector, including calibration $\left(\alpha, \beta_{x}, \beta_{y}, k_{1}, k_{2}\right)$, camera pose \mathbf{r} and orientation \mathbf{q}, and linear \mathbf{v} and angular $\omega^{\boldsymbol{c}}$ velocities:
$\mathbf{m}_{k+1}=$
$\mathbf{m}_{k+1}=\left[\begin{array}{c}\alpha_{k+1} \\ \beta_{x_{k+1}} \\ \beta_{y_{k+1}} \\ k_{1_{k+1}} \\ k_{2_{k+1}} \\ \mathbf{r}_{k+1} \\ \mathbf{q}_{k+1} \\ \mathbf{v}_{k+1} \\ \boldsymbol{\omega}_{k+1}^{\mathcal{C}}\end{array}\right]=\left[\begin{array}{c}\alpha_{k} \\ \beta_{x_{k}} \\ \beta_{y_{k}} \\ k_{1_{k}} \\ k_{2_{k}} \\ \mathbf{r}_{k}+\left(\mathbf{v}_{k}+\Delta \mathbf{v}\right) \Delta t \\ \mathbf{q}_{k} \times \mathbf{q}\left(\left(\boldsymbol{\omega}_{k}^{\mathcal{C}}+\Delta \boldsymbol{\omega}^{\mathcal{C}}\right) \Delta t\right) \\ \mathbf{v}_{k}+\Delta \mathbf{v} \\ \boldsymbol{\omega}_{k}^{\mathcal{C}}+\Delta \boldsymbol{\omega}^{\mathcal{C}}\end{array}\right]$

Sum of Gaussian (SoG) Filter

- In our SoG filter, we approximate a probabil ity density function $p(\mathbf{x})$ as a combination of G weighted multivariate Gaussians as:

$$
p(\mathbf{x})=\sum_{g=1}^{G} \gamma^{g} \mathcal{N}\left(\mathbf{x}^{g} ; \mathbf{P}^{g}\right)
$$

