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Abstract

Considering a general class of single-
spike temporal-coded Integrate-and-fire
neurons, we analyze the Input-output
expressions of both leaky and nonleaky

Methods

We develop SNN models based on the
nonleaky neurons and consider neurons
that use spiking time to encode
Information. Each neuron emits a single

SNN Algorithm

Algorithm 1 Forward pass of a SNN neuron based on (11)

Input: z = [z,,--- , zn/|: input spiking time vector
Input: w = [w,,--- ,wx]|: weight vector

Output: z,,;: output spiking time

i < argsort(z): ascending order index

Zsorted <— Z|1]: sorted input vector

Wsorted <— W|[i]: sorted weight vector

Results-AWID

Our SNNs have the best performance
(highest accuracy) than DNN/CNN,
RL, and traditional machine learning
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nonleaky neurons can have a less-
complex and less-nonlinear input-output
response. They can be easily trained and
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Used in Training

Spiking Neuron Model for Real Implementation
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Conclusions
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