# Partially Supervised Multi-Task Network for Single-View Dietary Assessment

Ya Lu, Thomai Stathopoulou and Stavroula Mougiakakou Al in Health and Nutrition Group, ARTORG Center for Biomedical Engineering Research, University of Bern

### **Background and Aims**

Dietary assessment in terms of calories and macro-nutrient content estimation become more and more important for individuals that want to follow a healthy lifestyle. Food segmentation, recognition and volume estimation are the essential steps of computer vision based dietary assessment. Existing methods require either multi-image input or additional depth maps, reducing convenience of implementation and practical significance.

To this end, we propose a partially supervised network architecture, which:

- jointly performs geometric understanding (depth prediction and 3D plane estimation) and semantic prediction on single food image,
- needs only monocular videos with semantic ground truth and



Input RGB





enables a robust and accurate food volume estimation on non-ideal scenarios (e.g. texture less scenario).

#### Methodology



Food 3D model





COMPARISON RESULTS OF DEPTH ESTIMATION. "M" AND "C" INDICATE MADIMA AND CANTEEN DATABASE, RESPECTIVELY. THE BOLD INDICATES

(a) Canteen database (contains 92 meals / videos); (b) MADiMa database [1] (contains 80 meals / videos)

THE BEST PERFORMANCE WITH UNSUPERVISED APPROACH, WHILE THE "\_" IS THE BEST PERFORMANCE OF SUPERVISED METHOD.

|                       |    |             | Error metrics |              |             | Accuracy metrics |                 |                   |                   |
|-----------------------|----|-------------|---------------|--------------|-------------|------------------|-----------------|-------------------|-------------------|
| Method                | DB | Supervision | Abs. Rel.     | Sq. Rel.     | RMSE        | RMSE log         | $\delta < 1.05$ | $\delta < 1.05^2$ | $\delta < 1.05^3$ |
| Allegra et al. [1]    | M  | Depth       | 0.017         | 0.279        | 11.63       | 0.023            | 0.977           | 0.999             | <u>1.0</u>        |
| Lu <i>et al.</i> [2]  | M  | Depth       | <u>0.013</u>  | <u>0.181</u> | <u>9.27</u> | <u>0.018</u>     | <u>0.988</u>    | <u>0.999</u>      | <u>1.0</u>        |
| GeoNet [3]            | M  | Mono        | 0.028         | 1.719        | 26.55       | 0.046            | 0.885           | 0.955             | 0.974             |
| Monodepth2 [4]        | M  | Mono        | 0.027         | 0.647        | 17.36       | 0.032            | 0.863           | 0.984             | 0.998             |
| Ours                  | M  | Mono        | 0.022         | 0.488        | 14.86       | 0.029            | 0.907           | 0.989             | 0.996             |
| GeoNet <sup>[3]</sup> | C  | Mono        | 0.080         | 4.160        | 29.90       | 0.097            | 0.434           | 0.721             | 0.873             |
| Monodepth2 [4]        | C  | Mono        | 0.063         | 7.617        | 30.01       | 0.086            | 0.527           | 0.836             | 0.947             |
| Ours                  | C  | Mono        | 0.056         | 1.536        | 20.53       | 0.070            | 0.535           | 0.834             | 0.951             |



COMPARISON RESULTS OF FOOD VOLUME ESTIMATION. "M" AND "C" INDICATE THE MADIMA AND CANTEEN DATABASE, RESPECTIVELY.

| Method            | Supervision | Img.<br>Num. | DB | MAPE  |
|-------------------|-------------|--------------|----|-------|
| Lu et al. [2]     | Depth+Vol.  | 1            | M  | 19.1% |
| Dehais et al. [5] | Mono views  | 2            | M  | 36.1% |
| Ours              | Mono        | 1            | M  | 25.2% |
| Ours              | Mono        | 1            | C  | 20.3% |

[1] and [2] are fully supervised approaches; [3] and [4] are video supervised approaches; [5] is Structure from Motion (SfM) based

#### Conclusions

- We propose a partially supervised network architecture that jointly predicts depth map, semantic segmentation map and 3D table plane from a single RGB food image, for the first time enabling a full-pipeline single-view dietary assessment.
- The training procedure is only supervised by monocular videos with small number of semantic ground truth.
- The proposed network significantly outperforms the SfM-based approach and the SOTA unsupervised approach, while presenting a comparable performance with respect to the fully supervised approach.



UNIVERSITÄT

ARTORG CENTER

BIOMEDICAL ENGINEERING RESEARCH

BERN

## **WINSELSPITAL**

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

#### References

[1] Allegra et al., "A multimedia database for automatic meal assessment system", ICIAP, 2017 [2] Lu et al., "A multi-task learning approach for meal assessment", MADiMa@IJCAI, 2018 [3] Z. Yin and J. Shi, "GeoNet: Unsupervised learning of dense depth, optical flow and camera pose," CVPR, 2018 [4] C. Godard et al., "Digging into Self-Supervised Monocular Depth Prediction", ICCV, 2019 [5] J. Dehais et al., "Two-view 3D reconstruction for food volume estimation", TMM, 2017.