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• Deep networks must satisfy low latency, low 
memory consumption and low error constraints 
when deployed to solve real-world problems

•  Compression offers a quick solution to convert 
research-specific designs so they adhere to these 
constraints

• Common approaches to pruning:
○ Direct constraints on weights: Do not 

consistently account for downstream impact of 
pruning

○ Sparsity-inducing objective: Optimization of a 
more sensitive and difficult objective than 
cross-entropy   

Motivation
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Core Components of MINT
Over reliance on retained features increases 
susceptibility to adversarial attacks

Experimental Study

• “Development of a stochastic model of 
dependency or flow of information between filters 
of a deep network”

• Choice of stochastic modelling paradigm: Mutual 
Information

• Only retain filters that contribute the majority of 
the information

Our Core Philosophy

Quantitative Results: Calibration

ECE: 0.0517 ECE: 0.0762 ECE: 0.0305

ECE: 0.0500 ECE: 0.0383 ECE: 0.0069

Compression acts like a regularizer to decrease 
Expected Calibration Error (ECE)

Qualitative Results: Features

Contribution from image to target class
• Reduction in the number of features 
• Variation in type of features 

● MINT uses the conditional GMI[1] to compute ⍴(). This measures the dependency between filters across 
adjacent layers of the network

●  Retaining filters that contribute highly ensures we maintain the flow of information to downstream layers

VGG16 
CIFAR10

Method Pruned (%) Test Accuracy (%)

Baseline N/A 93.98

GAL[2] 82.20 93.42

MINT (ours) 83.46 93.43

ResNet56 
CIFAR10

Baseline N/A 92.55

NISP[3] 42.20 93.01

OED[4] 43.50 93.29

MINT (ours) 57.01 93.02

Method Pruned (%) Test Accuracy (%)

ResNet50 
ILSVRC12

Baseline N/A 76.13

GAL[2] 16.86 71.95

OED[4] 25.68 73.55

SSS[5] 27.05 74.18

NISP[3] 43.82 71.99

ThiNet[2] 51.45 71.01

MINT (ours) 49.62 71.05

● Number of samples used to compute GMI has a direct correlation with accuracy of mutual information 
estimates and Pruned (%)

● Large grouping of filters (low resolution) leads to weaker GMI estimates and therefore, high Pruned (%) 
● Highly competitive performance even when compared to approaches with iterative or modified objective 

functions
● MINT allows us to reduce the overall memory consumed while matching the Test Accuracy (%) of the baseline, 

despite low resolution (filter groups) and a single prune-retrain pass

● Improving robustness to adversarial attacks
● Iterative extension to increase sparsity while 

maintaining high performance

Future Work


