

MINT: Deep Network Compression via Mutual Information-based Neuron Trimming

Madan Ravi Ganesh¹, Jason J. Corso¹, and Salimeh Yasaei Sekeh² ¹Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI ²School of Computing and Information Science, University of Maine, Orono, ME

Motivation

- Deep networks must satisfy low latency, low memory consumption and low error constraints when deployed to solve real-world problems
- Compression offers a quick solution to convert research-specific designs so they adhere to these constraints
- Common approaches to pruning:
- Direct constraints on weights: Do not consistently account for downstream impact of pruning
- Sparsity-inducing objective: Optimization of a more sensitive and difficult objective than cross-entropy

Our Core Philosophy

- "Development of a stochastic model of dependency or flow of information between filters of a deep network"
- Choice of stochastic modelling paradigm: Mutual Information
- Only retain filters that contribute the majority of the information

Core Components of MINT

- MINT uses the conditional GMI^[1] to compute ρ (). This measures the dependency between filters across adjacent layers of the network
- Retaining filters that contribute highly ensures we maintain the flow of information to downstream layers

Qualitative Results: Features

Contribution from image to target class

- Reduction in the number of features
- Variation in type of features

MINT-compressed ResNet56

Target: Dog

Target: Cat

Experimental Study

VGG16 CIFAR10	Method	Pruned (%)	Test Accuracy (%)	ResNet50 ILSVRC12	Method	Pruned (%)	Test Accuracy (%)
	Baseline	N/A	93.98		Baseline	N/A	76.13
	GAL ^[2]	82.20	93.42		GAL ^[2]	16.86	71.95
	MINT (ours)	83.46	93.43		OED ^[4]	25.68	73.55
ResNet56 CIFAR10	Baseline	N/A	92.55			27.05	74.18
	NISP ^[3]	42.20	93.01		NISP ^[3]	43.82	71.99
	OED ^[4]	43.50	93.29		ThiNet ^[2]	51.45	71.01
	MINT (ours)	57.01	93.02		MINT (ours)	49.62	71.05

- Number of samples used to compute GMI has a direct correlation with accuracy of mutual information estimates and Pruned (%)
- Large grouping of filters (low resolution) leads to weaker GMI estimates and therefore, high Pruned (%)
- Highly competitive performance even when compared to approaches with iterative or modified objective functions
- MINT allows us to reduce the overall memory consumed while matching the Test Accuracy (%) of the baseline, despite low resolution (filter groups) and a single prune-retrain pass

Qualitative Results: Adversarial Attacks

Over reliance on retained features increases susceptibility to adversarial attacks

MAINE

Quantitative Results: Calibration

Compression acts like a regularizer to decrease **Expected Calibration Error** (ECE)

- Improving robustness to adversarial attacks
- Iterative extension to increase sparsity while maintaining high performance

References

- [1] Yasaei Sekeh, S. and Hero, A.O. Geometric estimation of multivariate dependency. Entropy 2019.
- [2] Lin et al. Towards optimal structured cnn pruning via generative adversarial learning. CVPR 2019.
- 3] Yu et al. Nisp: Pruning networks using neuron importance score propagation.CVPR 2018. [4] Wang et al. Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation. IEEE Access 2019.
- [5] Huang, Z. and Wang, N. Data-driven sparse structure selection for deep neural networks. ECCV 2018.

Acknowledgements

This work has been partially supported (Madan Ravi Ganesh and Jason J. Corso) by NSF IIS 1522904 and NIST 60NANB17D191 and (Salimeh Yasaei Sekeh) by NSF 1920908.