SFU

Human Embryo Cell Centroid Localization and Counting in Time-Lapse Sequences

Lisette Lockhart*, Parvaneh Saeedi*, Jason Au[†], Jon Havelock[†]

- * Simon Fraser University
- † Pacific Centre for Reproductive Medicine

Motivation

- More than 30,000 In Vitro Fertilization (IVF) treatments performed annually in Canada [1]
 - Low success rate (~3.5 embryo transfers per pregnancy [1])
- Transferring highest quality embryos will improve likelihood of implantation
 - Monitor embryo during in vitro development with time-lapse imaging
- Knowing when embryonic cells divide is indicative of embryo quality [2],[3]
 - Annotation is time-consuming and subjective
 - Automate cell centroid localization to measure cell stage quickly and objectively

Related Work

Cell Counting in Images via Classification

- Minimal annotations required (cell stage onset frame)
- Uses Convolutional Neural Network (CNN) classification models
- Cannot capture cell orientation or movement of cells throughout sequence

Cell Counting in Images via Localization

- More annotations needed (cell centroid coordinates)
- Achieved using CNN segmentation models with structured regression output layer
- Captures more information about cells enabling further assessment

Methodology

Structured Regression Network

Fully convolutional regression network

- ResNet-18 feature encoder
- Progressive Upsampling Convolution
- Weighted mean squared error
 - Address severely imbalanced foreground/background pixels
 - m,n: pixel height, width
 - y: ground truth regression mask $\hat{\mathbf{y}}$: predicted regression mask $\hat{\mathbf{y}}$: predicted regression mask
 - ŷ: predicted regression mask
 - α_0 and α_1 : adjustable weighting parameters

Temporal Context Prior

- Cell centroid location and cell count relies considerably on previous frame
- Add centroid regression mask from previous frame to provide context (Multi-Input I)
- Centroid mask from previous frame has no indication of cell movement
- Add optical flow diagram between subsequent frames to provide context (Multi-Input II)
- Encode context as attention with squeeze-excitation
- Add attention modules to layers with most channels

Sampling Procedure

- Very little movement between most frames
- Avoids grouping together similar samples

Algorithm 1: Training with predicted outputs from

from previous frame X_2 **Output:** centroid masks \mathbb{Y} , predicted centroid masks $\mathbb{\hat{Y}}$

Input: sequence frames X_1 , predicted centroid masks

while loss not plateaued do

- Train on $([\mathbf{x}_1^{(i)}, \hat{\mathbf{x}}_2^{(i)}], \mathbf{y}^{(i)}), i \in \{2, 3, ..., N\}$ on all sequences in training set for one epoch Predict on $([\mathbf{x}_1^{(i)}, \hat{\mathbf{x}}_2^{(i)}], \mathbf{y}^{(i)}), i \in \{1, 2, ..., (N-1)\}$
- Store $\hat{\mathbf{y}}^{(i)}, i \in \{1, 2, ..., (N-1)\}$ as $\hat{\mathbf{x}}_{2}^{(i)}, i \in \{2, 3, ..., N\}$

Network Architecture

[1] Canadian Fertility & Andrology Society: Canadian Assisted Reproductive Technologies Register Plus (CARTR Plus), https://cfas.ca/cartrannual-reports.html. Last accessed 2019 Dec 19. [2] Jacobs, C., Nicolielo, M., Erberelli, R., Mendez, F., Fanelli, M., Cremonesi, L., Aiello, B., and Lorenzon, A.R.: Correlation between morphokinetic parameters and standard morphological assessment: what can we predict from early embryo development? A time-lapse-

• 108 human embryo time-lapse sequences from 1-4 cell stage

Experimental Results

- Dot-annotated cell centroids
- Training, validation, and test sets randomly selected as 70%/15%/15% of sequences
 - 5-fold cross-validation
- Adam optimizer with initial learning rate 3×10⁻⁵

Cell Centroid Localization

Model	Distance to nearest centroid (in pixels)					
	1-cell	2-cell	3-cell	4-cell	Total	
U-Net [29]	2.88	4.25	4.72	4.43	4.24	
Cell-Net [21]	2.97	4.14	4.94	4.68	4.38	
Multi-Input I (Proposed)	2.51	3.98	4.73	4.28	4.05	
Multi-Input II (Proposed)	2.57	3.95	4.35	4.20	3.98	

- Detection: < 5 pixels from nearest ground truth centroid
- Near Miss: ≥ 5 and < 8 pixels from nearest ground truth centroid
- Total Miss: ≥ 8 pixels from nearest ground truth centroid

Model	Cell detection rate (in %)				
	Detection	Near Miss	Total Miss		
U-Net [29]	80.0	11.7	8.3		
Cell-Net [21]	77.1	11.9	11.0		
Multi-Input I (Proposed)	80.1	11.0	8.9		
Multi-Input II (Proposed)	80.9	11.3	7.8		

Cell Counting

Cell Stage Acc. =
$$\frac{TP_i + TN_i}{\sum_{s=1}^{S} N_s}$$
, $i \in \{1, 2, 3, 4\}$

Model	Cell Stage Prediction Accuracy (in %)				
	1-cell	2-cell	3-cell	4-cell	Total
U-Net [29]	92.8	67.4	61.6	78.4	77.7
Cell-Net [21]	96.2	81.8	67.5	62.3	77.5
Multi-Input I (Proposed)	97.7	78.8	69.2	68.6	79.3
Multi-Input II (Proposed)	95.7	74.7	69.0	75.8	80.2

Conclusions & Future Work

- ✓ Structured regression suitable for cell centroid localization for cell counting in embryo sequences
- ✓ Foreground/background pixel imbalance relaxed using temporal relationship in embryonic cell development
- ✓ Training strategy samples diverse batches of data for network gradient updates
- Extend to entire 5-day in vitro embryo development sequence