A Randomized Algorithm for Sparse Recovery
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Sparse Signal Recovery

e Finding the solution to an underdetermined linear system: & = arg min | Az — 1y
renpm

e There are k non-zeros in x, and £ << n

e Lixploiting the sparsity of a signal to recover it from far fewer samples than required by the Nyquist-Shannon sampling theorem.

Examples Approach

Sparsity: 641/9024 Sparsity: 851/11424 Sparsity: 4890 /38400 Leveraging the structure in the signal can recover a sparse signal with
m . fewer number of measurements

THJ GC/ . SO A k-sparse signal can be recovered using only O(k) measurements

Use a constrained EMD model

20 40

Find the solution to a minimum-cost flow problem

Algorithm Use a randomized algorithm with E(cy) = E(ep) =1

_ _ Reduce algorithm complexity by using only one invocation of the
Outline of the Proposed Algorithm model projection operator 7 for both head and tail approximations
Initialization: z° < 0
for 2 =0,...,7T do

b* «+ AT (y — Az?)

S < supp (T(b“)) e A randomized algorithm with geometric convergence

I’ < S Usupp(z?)

Z|p Alty, zlpe < 0

i+l 5 e Relaxed the isometric requirement for sparse signal recovery:
end for

Return z*+1!

Results

e Mean of the output is optimal

— A has RIP, or
— A is scalable to a matrix that satisfies RIP




