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Sparse Signal Recovery
• Finding the solution to an underdetermined linear system: x̂ = arg min

x∈Rn
‖Ax− y‖.

• There are k non-zeros in x, and k << n

• Exploiting the sparsity of a signal to recover it from far fewer samples than required by the Nyquist-Shannon sampling theorem.

Examples
Sparsity: 641/9024 Sparsity: 851/11424 Sparsity: 4890/38400
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Algorithm

Approach
• Leveraging the structure in the signal can recover a sparse signal with

fewer number of measurements

• A k-sparse signal can be recovered using only O(k) measurements

• Use a constrained EMD model

• Find the solution to a minimum-cost flow problem

• Use a randomized algorithm with E(cH) = E(cT ) = 1

• Reduce algorithm complexity by using only one invocation of the
model projection operator T for both head and tail approximations

Results
• A randomized algorithm with geometric convergence

• Mean of the output is optimal

• Relaxed the isometric requirement for sparse signal recovery:

– A has RIP, or

– A is scalable to a matrix that satisfies RIP


