

Contrastive Data Learning for Facial Pose and Illumination Normalization

Gee-Sern Jison Hsu¹ (<u>jison@mail.ntust.edu.tw</u>), Chia-Hao Tang¹, Svetlana Yanushkevich², Marina L Gavrilova²

¹National Taiwan University of Science and Technology, Taiwan, ²University of Calgary, Canada.

Introduction

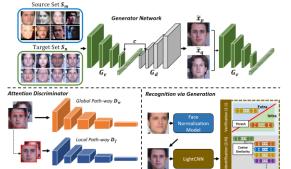
- > We propose the Pose and Illumination (PIN) framework with contrast data learning for fac normalization.
- The PIN framework is designed to learn the transformation from a source set to a target set.
- The source set contains faces collected in the wild and thus covers a wide range of variation across illumination, pose, expression and other variables.
- ➤ The target set contains images taken under controlled conditions and all faces are in frontal pose and balanced in illumination.

Contributions

- Different from most previous work primarily focused on pose normalization, our proposed approach normalizes faces in both pose and illumination.
- ➤ The proposed approach offers a comprehensive study on the combination of various loss functions, extending the understanding of their importance on the generated images.
- The proposed approach is verified to be highly competitive to state-of-the-art methods for face recognition via normalization.

Proposed PIN Framework

- > The encoder is made of the ArcFace recognition model and acts as a facial feature extractor.
- > The decoder aims to transform an arbitrary face into a illumination and pose normalized face.
- ➤ The discriminators are trained to ensure the photo-realistic quality of the normalized face images generated by the decoder.



Objective Functions

$$\begin{split} & \succ \textbf{Identity Loss} & \qquad \qquad L_{id} = \left\| G_e(x_p) - G_e(\tilde{x}_p) \right\|_2 + \left\| G_e(x_q) - G_e(\tilde{x}_q) \right\|_2 \\ & \succ \textbf{Adversarial Loss} & \qquad \qquad L_a = \mathbb{E} \big[D_{\theta_t}(\tilde{x}_q) \big] + \mathbb{E} \big[D_{\theta_t}(\tilde{x}_p) \big] - \mathbb{E} \big[D_{\theta_t}(x_p) \big] \\ & \qquad \qquad + \lambda \mathbb{E} \left[\left(\left\| \nabla_{\tilde{x}} D_{\theta_t}(\tilde{x}) - 1 \right\|_2 \right)^2 \right], i \in [1, 2] \end{split}$$

> Symmetry Loss $L_s = |\tilde{x}_p - \tilde{x}_p'| + |\tilde{x}_q - \tilde{x}_q'|$ > Reconstruction Loss $L_p = |\tilde{x}_p - x_p|$

Contrastive Data

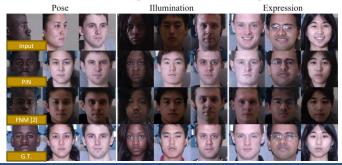
Source set - CASIA-WebFace Faces taken under unconstrained condition.

Target set - Multi-PIE
Faces taken under frontal and balance illumination

Face Synthesis on IJB-C

Face Synthesis on Multi-PIE

Face normalization across pose, illumination and expression.



Performance Evaluation

Performance comparison on IJB-A. Verification Identification Method @FAR=.01 @FAR=.001 @Rank-1 @Rank-5 $77.1\pm1.6\ 88.7\pm0.9$ 73.3 ± 1.8 PAM [8] 55.2 ± 3.2 85.2±1.8 93.7±1.0 DCNN [28] 78.7 ± 4.3 66.3 ± 3.3 $90.2 \pm 0.6 \ 95.4 \pm 0.5$ FF-GAN [14] 85.2 ± 1.0 87.6 ± 1.1 FaceID-GAN [14] 69.2 ± 2.7 $92.0\pm1.3\ 96.1\pm0.7$ DR-GAN [5] 87.2 ± 1.4 78.1 ± 3.5 FNM [3] 93.4 ± 0.9 83.8 ± 2.6 96.0 ± 0.5 98.6 ± 0.3 91.2 ± 1.1 $92.4 \pm 1.7 \ 95.4 \pm 0.8$ LightCNN [26] 84.4 ± 0.8 PIN + LightCNN 95.4 ± 1.8 $97.1 \pm 0.1 \ 98.6 \pm 0.9$ 90.1 ± 1.9 ArcFace [13] 94.9 ± 1.2 $95.1 \pm 0.698.1 \pm 0.3$ 90.2 ± 0.5 96.2 ± 1.2 91.5 ± 0.5 $97.6 \pm 0.6 \ 98.9 \pm 0.3$ PIN + ArcFace

Performance comparison on IJB-C. Rank-1 Performance(%) on Multi-PIE.

	Verification		Method	~ -					90°
Method	@FAR=.01	@FAR=.001	FF-GAN [14]						61.2
FaceNet [7]	32.40	20.58	TP-GAN [1]						75.0
VGGFace [10]	45.60	26.18	DR-GAN [5]			88.0			-
			LightCNN [26]	99.2	98.0	97.7	95.5	73.3	20.7
DR-GAN [5]	88.2	73.6	CAPG-GAN [17]	99.9	99.4	98.3	93.7	87.4	77.1
VGGFace2 [11]	95.0	90.0	PIM [2]						86.5
LightCNN[26]	90.63	84.32	FNM [3]						55.8
PIN + LightCNN	91.49	86.56	LightCNN [26]						20.7
			PIN + LightCNN	100	100	99.8	98.9	95.2	84.2
ArcFace[13]	95.82	91.69	ArcFace [13]	100	100	100	96.5	83.1	40.5
PIN + ArcFace	96.11	92.27	PIN + ArcFace	100	100	100	99.2	96.9	86.5

Conclusion

We the FNM with four components:

- > Re-organized the contrastive data set by strictly keep the target set with front face with balanced illumination.
- Add in the symmetry loss to stabilize both target and source face optimization process.
- Determine the weights to emphasize the contributions of different losses.
- Incorporation of the SOTA ArcFace as our encoder which provide more discriminative prior knowledge to the decoder.

Experiments show that PIN framework is competitive to state-ofthe-art approaches for handling both face recognition and face synthesis.