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Generative Adversarial Networks (GAN)

* GANs are a semi supervised neural network model that consists two
competing networks; a generator and a discriminator.

 The Generator’s objective is to produce products almost identical to
the ground truth.

* The Discriminator’s objective is to discriminate between the ground
truth and the generator’s output.

* The two competing networks eventually converge at the Nash
equilibrium.
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Transferability

* Humans are able to discern what previous knowledge might apply to
new problems.

* The brain will “fit” previous knowledge to new tasks where it applies.

* This same idea can apply to neural networks, which we know as
transferability.

* Transferability utilizes the idea that certain features overlap many
classes.
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Applicability

* We define applicability as how well known features at a specific layer
can be used to differentiate.

* In neural networks this can be broken down into three sub-groups
1. Set applicability: How well does a network apply to a whole task?

2. Class applicability: How well can the known features be used to differentiate
an input class from all other input classes?

3. Input applicability: How well can the known features be used to
differentiate a single input from all other inputs?
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Set Applicability
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Measuring Applicability

* By freezing and retraining layers we measure how well a network N
can separate input x from a class from the unknown set un; at layer n;.

£ = N((z,un;),n;)

* Class applicability is then the average separability between x and all
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Contributions

* Explore the applicability of features between discriminative networks
non-adversarially trained classification networks.

e Demonstrate the differences between the learned features in a
discriminative and a classification process.

* Transferability of features to a GAN is judged by measuring the
applicability of features to the generator and discriminator.
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Experimental Setup

* Classification is a good task to =
measure differentiation and thus
applicability. —

* Applying the features learned by
the generator and discriminator

to classification allows for

measuring their applicability at — N
the different levels. ‘




GAN Set Applicability

* Apply the learned weights from both S
Generator G and Discriminator D to ® Olichimiiingy
classification of the unknown data set.

* Weights are transferred layer by layer.

* The set applicability for each network is
then the ability to use those features at
each layer to differentiate known from
unknown.
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GAN Class Applicability
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GAN Layer Applicability
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GAN Transfer

. . Disclayer 1 Disclayer2 Disclayer3 Disclayer4 Genlayerl Genlayer2 Genlayer3 Gen layer4
* We have seen that there is high

applicability between the generator and
discriminator for similar tasks.

e Given the relationship between the tasks
it goes to reason that they learn similar
features and apply them differently.

* We swapped roles of the generator and
discriminator to measure how well the
learned features could be transferred to
the opposite task.




Conclusions

* Presented, to the best of our knowledge, the first results on
evaluation of feature applicability and transferability in generative
adversarial networks.

 Demonstrated a discriminator and a generator can both be applicable
to classification tasks.

* Provided resented insights into how applicable they are to a
classification task from both a set and class applicability perspective.
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Thank You!
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