

## Real-time Pedestrian Lane Detection for Assistive Navigation using Neural Architecture Search

Sui Paul Ang<sup>1</sup>, Son Lam Phung<sup>1</sup>, Abdesselam Bouzerdoum<sup>1,2</sup>, Thi Nhat Anh Nguyen<sup>1</sup>, Soan Thi Minh Duong<sup>1</sup>, and Mark Matthias Schira<sup>1</sup> <sup>1</sup>University of Wollongong, Australia, and <sup>2</sup>Hamad Bin Khalifa University, Qatar

## **1. INTRODUCTION**

- Pedestrian lane detection is a core component in many assistive and autonomous navigation systems.
- These systems are usually deployed in environments that require real-time processing.
- Many state-of-the-art deep neural networks only focus on detection accuracy but not inference speed.
- Depending on the complexity of the problem and the size of the dataset, a small model may be sufficient.
- The task of designing a high-performing deep model is time-consuming and requires experience.
- To tackle these issues, we propose a neural architecture search algorithm that can find the best deep network for pedestrian lane detection automatically.



Fig 1. An input image and its ground-truth from the pedestrian lane segmentation dataset.

## 2. PROPOSED METHOD

• The proposed NAS method finds the best architecture in a network-level search space.

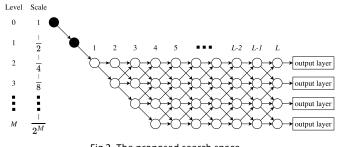
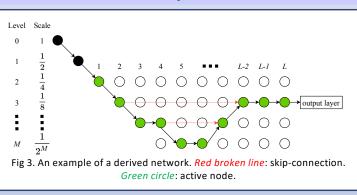




Fig 2. The proposed search space.

- From the search space, the algorithm determines the best operation for each node and the optimum data path through the network.
- We use the differentiable architecture search [1] to find the best network from the search space.
- We also add skip-connections to the derived network, which further improves the segmentation performance.



## 3. EXPERIMENTS AND ANALYSIS

- The results show that the proposed NAS method can find small and fast networks that have a comparable performance with the state-of-the-art networks, while being significantly faster.
- The derived network is capable of processing 500 frames per second.
- To demonstrate the real-time capability of the derived network, we developed an online tool for pedestrian lane segmentation. A video demonstration is available at https://paul-ang.com/nas-lane.html.

| Methods                                               | Accuracy | F-measure | Inference<br>time<br>(sec/image) |
|-------------------------------------------------------|----------|-----------|----------------------------------|
| Edge-based method                                     | 60.46    | 65.53     | 3.016                            |
| Border-detection + segmentation                       | 91.68    | 91.50     | 2.774                            |
| DeepLabv3+ without<br>ImageNet pretraining            | 89.83    | 86.93     | 0.045                            |
| DeepLabv3+ with<br>ImageNet pretraining               | 94.66    | 92.53     | 0.045                            |
| Fully Convolutional<br>DenseNets (FC-<br>DenseNet56)  | 96.65    | 96.12     | 0.036                            |
| Fully Convolutional<br>DenseNets (FC-<br>DenseNet103) | 96.72    | 96.15     | 0.054                            |
| SegNet                                                | 96.03    | 94.62     | 0.033                            |
| Hybrid DL-GP                                          | 97.23    | 96.18     | 0.182                            |
| The proposed NAS method                               | 97.12    | 96.06     | 0.002                            |

References