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Introduction

Context is an important mechanism that makes visual recognition easy for humans

[Palmer, 1975, Biederman et al., 1982] hence it is natural to also model context in

machine perception.

State-of-the-art two-stage object detection frameworks (e.g. Faster R-CNN) classify

each region in isolation, without considering what is in the rest of the image.
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Figure 1. Current two-stage object detection frameworks classify each region in isolation, overlooking

crucial contextual information (left). We propose a lightweight belief-propagation mechanism to bring

contextual information to guide detection (right).

Prior work tries to model context in a manner which is expensive from both

computational and human labeling point of view [Chen et al., 2018, Jiang et al., 2018,

Liu et al., 2018].

We propose a novel approach for context-aware object detection by employing a

lightweight belief-propagation mechanism which operates on visual representations

of regions and the scene, as well as the spatial relationships between regions.

We also experiment with capturing similarities between regions at a semantic level by

modeling class co-occurrence and linguistic similarity between class names.

Approach

Our work builds on top of Structure Inference Net (SIN), proposed in Liu et al. [2018].

The first set of models we experiment with employ SIN’s structure inference module as a

post-processing step to bring semantic cues of different level for regions as in some prior

work (e.g. Chen et al. [2018], Xu et al. [2019]). SIN uses two GRU cells (EdgeGRU and

SceneGRU) as write functions for messages passed to a region from other regions as well

as the scene. A message passed from region i to j is weighted as:

ei→j = ReLU(WgRi→j) ∗ tanh(Wv[f i
, f

j ])

In above formula, the former term captures spatial relationship between two regionswhile

the latter captures their visual relationship. Please refer to our paper for the exact nota-

tions.

Base: Models the co-occurrence of object categories based on the backbone

detector’s best set of guesses to capture the semantic relationship between regions

for edge weight calculation.

Scene: Updates scene representation at the end of each message-passing round,

then uses this new representation in SceneGRU for the next round.

Attr1: Models mid-level semantic relationships between regions using object

category attributes for edge weight calculation. Having built an attribute matrix

AC×J , where C is the number of classes and J is the size of attribute dictionary, this

model learns a projection f : AC×J → MC×16 to express attributes more

complactly and then retrieves mid-level semantic similarity of regions from MMT

using their highest predicted classes.

Attr2: Similar to Attr1 but first maps attributes to regions using their predicted class

scores. After this mapping, it projects region-attribute matrix to a lower dimensional

space and retrieves attribute similarity of regions.
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Figure 2. An overview of our most efficient approach. We model context between regions through

single-layer GCNs which capture visual and spatial relationships.

Our second set ofmodels replaces GRUs used in SINwith a lightweight belief-propagation

mechanism.

GeoVis: Employs two single-layer GCNs to perform message-passing between node

pairs based on their visual (Visual GCN) and spatial (Geo GCN) relationships.

GeoVis-S: Similar to GeoVis but models entire scene as a first-class participant in

Visual GCN along with the regions.

GeoVis-Ling: Uses a weighted loss formulation that seeks to increase the ability of a

model to discriminate between semantically similar categories based on their pairwise

distance in GloVe (Pennington et al. [2014]) space.

Experiments

FRCNN SIN Scene Attr1 Attr2 GeoVis-S GeoVis-Ling

mAP 0.747 0.765 0.756 0.753 0.753 0.754 0.750

Animals AP 0.818 0.825 0.823 0.821 0.825 0.829 0.821

Table 1. Detection results on VOC 2007 test. VOC 2007 trainval + VOC 2012 trainval is used for training.

The two best models are bolded. The top method is also underlined.

On VOC 2007, our Scene, Attr1 and Attr2 methods, and our GeoVis-S and GeoVis-Ling

outperform FRCNN on most categories (please refer to our paper) and on average. Im-

portantly, our proposed method, GeoVis-S, outperforms SIN in terms of the average

over animal categories, and it uses 6× fewer parameters compared to SIN for context

modeling.

Test setting / Method FRCNN SIN GeoVis-S

AP @[ IoU=0.50:0.95 | area= all ] 0.207 0.215 0.211

AP @[ IoU=0.50 | area= all ] 0.403 0.423 0.411

AP @[ IoU=0.75 | area= all ] 0.194 0.198 0.198

Table 2. Detection results on COCO 2019 test-dev (server evaluation). COCO 2014 train split is used for

training. The best model is bolded.

On COCO 2019 test-dev, SIN improves over FRCNN by 4% but adds 12× more param-

eters while our proposed method, GeoVis-S, brings a gain of 2% over FRCNN and adds

2× more parameters. On the other hand, GeoVis-S achieves the same performance as

SIN when required IoU threshold is 0.75.

On COCO 2014 minival (please refer to our paper), GeoVis-S achieves the best scores

for 4 of the 11 supercategories while FRCNN being the best for only 1 supercategory.

Comparison of Model Parameters

As all three models are identical up to FC6 and their R-CNN heads operate on R4096 ,
we report the number of parameters between FC6 and the R-CNN head in each model

to make a fair and dataset-agnostic comparison.

FRCNN SIN GeoVis-S (Ours)

# Params 16,781,312 201,359,372 33,570,829

Table 3. Number of trainable parameters between FC6 and the R-CNN head.

Our model uses 6× less parameters than SIN to model context, yet performs very

competitively. This makes our model more feasible to deploy on resource-constrained

devices.

Qualitative Evaluation
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Above figure shows a qualitative comparison between SIN and our GEOVIS-S at 0.8 con-

fidence threshold. As SIN passes messages between regions based on a single graphical

representation wherein edges encode joint spatio-visual relationships between regions, it

fails in utilizing context for rare object placements. In the first image it fails to detect the

man who rides the bus since Pascal VOC contains very few examples with that particular

spatio-visual relation between bus and person. Similarly, in the last image, SIN fails to

detect the chair outside as it is under different illumination. Our method detects these

two objects perfectly as it utilizes two graphs for message passing, separate for visual and

spatial relationships, hence relaxes SIN’s constraint.
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