Augmented Bi-path Network for Few-shot Learning

Baoming Yan^{1,2*,} Chen Zhou^{1*}, Bo Zhao³, Kan Guo², Jiang Yang², Xiaobo Li², Ming Zhang¹ and Yizhou Wang¹

¹ Peking University, ² Alibaba Group, ³ The University of Edinburgh (* Indicates equal contribution)

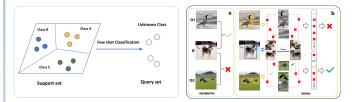
Problem Definition

Goal: Few-shot Learning (FSL) which aims to learn from few labeled training data and train a good classification model with few labeled data.

Definition:

For few-shot classification, the dataset contains a meta-train set and a meta-test set, which have disjoint categories ($C_{meta-train} \cap C_{meta-test} = \emptyset$). The meta-train set, in which each category contains many labeled samples, is used to train a generalized model. Then, it is evaluated on the meta-test set with only few labeled images in each category. In the popular setting, many testing episodes are performed during evaluation process. Each testing episode contains N categories and each category has K labeled images. These labeled data form the support set S = $\{(x_{11}, y_{11}), (x_{12}, y_{12}) \dots, (x_{N,K}, y_{N,K})\}$, where (x_{ij}, y_{ij}) is *j*th datum of *i*th class. The rest unlabeled testing data of these N categories form the query set $Q = \{(x_{1,K+1}, y_{1,K+1}), (x_{1,K+1}, y_{1,K+1}, y_{1,K+1}), (x_{1,K+1}, y_{1,K+1}, y_{1,K+1}, y_{1,K+1}), (x_{1,K+1}, y_{1,K+1}, y_{1,K+1}), (x_{1,K+1}, y_{1,K+1}, y_{1,K+1}), (x_{1,K+1}, y_{1,K+1}, y$

 $(x_{1,K+2}, y_{1,K+2}), \dots, (x_{N,K+1}, y_{N,K+1}), (x_{N,K+2}, y_{N,K+2})\}$. Such setting is called N-way K-shot learning.



Motivation:

- Previous FSL method learns to compare the testing (query) image and training (support) image by simply concatenating the features of two images and feeding it into the neural network
- With few labeled data in each class, the neural network has difficulty in learning or comparing the local features of two images. Such simple image-level comparison may cause serious mis-classification.
- For more precise comparison, we propose Augmented Bi-path Network (ABNet) to learn to compare both global and local features on multi-scales.

Key Contribution:

- We propose Augmented Bi-path Network (ABNet) to learn to compare both global and local features of support and query images, which includes two novel modules, namely "Learning to Augment" and "Learning to Compare"
- We evaluate our approach on three challenging Few-shot Learning benchmarks, miniImageNet, Caltech-256 and tieredImageNet. Our ABNet outperforms the state-of-the-art by a large margin.

Experiments and Results

Results on three challenging Few-shot Learning benchmark:

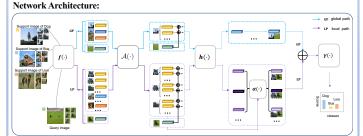
Method		miniImageNet		Caltech-256		tieredImageNet	
		5way1shot	5way5shot	5way1shot	5way5shot	5way1shot	5way5shot
MatchingNet [16]	NIPS'16	43.56 ± 0.84	55.31±0.73	45.59±0.77	54.61±0.73	54.02	70.11
MetaLSTM [21]	ICLR'17	43.44 ± 0.77	60.60 ± 0.71	-	-	-	-
MAML [20]	ICML'17	48.70 ± 0.84	55.31 ± 0.73	48.09 ± 0.83	57.45 ± 0.84	51.67 ± 1.81	70.30 ± 0.03
MetaNet [17]	ICML'17	49.21 ± 0.96	-	-	-	-	-
ProtoNet [12]	NIPS'17	49.42 ± 0.87	68.20 ± 0.70	-	-	54.28 ± 0.67	71.42 ± 0.61
RelationNet [13]	CVPR'18	50.44 ± 0.82	65.32±0.77	56.12 ± 0.94	73.04 ± 0.72	54.48 ± 0.93	71.32 ± 0.73
CTM [42]	CVPR'19	41.62	58.77	-	-	-	-
Spot&Learn [37]	CVPR'19	51.03 ± 0.78	67.96±0.71	-	-	-	-
MetaOptNet [43]	CVPR'19	$52.87 {\pm} 0.57$	$68.76 {\pm} 0.48$	-	-	54.71 ± 0.67	71.79±0.5
ABNet		58.12±0.94	72.02 ± 0.75	63.20±0.99	78.42+0.69	62.10±0.96	75.11±0.78

Results of Resnet backbone:

Results of different shots

Method

To fully exploit the few labeled images, we propose Augmented Bi-path Network (ABNet) for Few-shot Learning, the framework is illustrated as follow.



Algorithm:

3.

1. Salient Patch Extraction: starts with the patches sampled by selective search method and selects Top5 Salient Patches measured by:

$$(r_i) = \Pi(r_i) \cdot \frac{1}{K} \sum_{j=0}^{K} v(p_j)$$

$$v(p_j) = \min_{\pi \in \mathbb{S}} [\max_{t=0}^T I(\pi(t)) - \min_{t=0}^I I(\pi(t))]$$

2. Feature Embedding: encode the whole image and salient patches by CNN backbone f. Learning to Augment:

S

$$\begin{pmatrix} x_i^a \\ y_i^a \\ z_i^a \\ z_i^a \end{pmatrix} = \mathcal{A} \begin{pmatrix} x_i \\ y_i \\ z_i \\ 1 \end{pmatrix} = \begin{bmatrix} \mathcal{A}_{11}, & \mathcal{A}_{12}, & \mathcal{A}_{13}, & \mathcal{A}_{14} \\ \mathcal{A}_{21}, & \mathcal{A}_{22}, & \mathcal{A}_{23}, & \mathcal{A}_{24} \\ \mathcal{A}_{31}, & \mathcal{A}_{32}, & \mathcal{A}_{33}, & \mathcal{A}_{34} \\ 0, & 0, & 0, & 1 \end{bmatrix} \cdot \begin{pmatrix} x_i \\ y_i \\ z_i \\ 1 \end{pmatrix}$$

4. Learning to Compare:

a) Generating Similarity Maps
b) Learning to Re-weight:
c) Learning to Merge
$$o(s,q) = \gamma \left([\bigoplus_{i,j=1}^{i,j \leq N} \alpha(i,j) \cdot m_{s,q}^{i,j}] \oplus m_{s,q} \right)$$

Loss Function:

 $\mathcal{L}_{cls} = \frac{1}{B \times C} \sum_{i=1}^{B} \sum_{j=1}^{C} (P(i,j) - \mathbb{I}(y_i = = y_j))^2$ Classification Loss: $\mathcal{L}_{att} = \frac{S_{att}}{N^2} \sum_{i}^{N} \sum_{j}^{N} |\alpha(i, j)|$ Attention Loss: $\mathcal{L}_{aug} = \frac{S_{aug}}{B \times C} \sum_{k=1}^{B} \sum_{k=1}^{C} \sum_{k=1}^{K} (f(I_q) - f_k(I_s))^2 \mathbb{I}(y_i = = y_j)$ Augmentation Loss: $\mathcal{L} = \mathcal{L}_{cls} + \lambda_{att} \cdot \mathcal{L}_{att} + \lambda_{aug} \cdot \mathcal{L}_{aug}$ Total Loss:

Ablation Studies

Quantitative comparison of four variants of our methods:

Baseline: fixed global features miniImageNet Model 5way1shot 5way5shot • Baseline + LA (Learn to Augment) Baseline Baseline+LA Baseline+LA+SP Baseline+LA+SP+LR 52.44±0.91 54.27±0.91 66.50±0.77 68.02±0.77 • Baseline + LA + SP (Salient Patch) Baseline + LA + SP + LR (Learn to Re-weight) 69.70±0.72 72.02±0.75 58.12±0.94

Visualization Comparison:

Conclusion

We propose a novel meta-learning based method, namely Augmented Bi-path Network, for Few-shot Learning. The proposed method extends the previous "learn-to-compare" based methods by introducing both global and local features on multi-scales, and learns to augment the features for better robustness. Experimental results show that our method significantly outperforms the state-of-the-art on three challenging datasets under all settings.