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Motivation and Comparison Algorithm
Algorithm 1 Progressive Cluster Purification.
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Input: An imagery dataset X without labels;
Output: CNN model fy with parameters 6 ;

1: Preset embedding feature dimension D, training epochs

T, cluster number N, for stopping declining;

for epoch ¢ =1 to T do

3: Get the number of clusters IV;
the process of PC, Eq.(1);
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4: Obtain D-dimensional feature space V(t) by CNN
pcP S ” e model, v(t) = fp, (2);
5t Implement k-means clustering algorithm to get U.S.()
Pipe“ne Of PCP with N; clusters;

6: for each cluster ¢ = 1 to V; do

Progressive Clustering (PC) 7: Split S.(¢) into class consistent set S’ (¢) and noise
y ; set N7 (t) by CP,;
8: Update class consistent set as S?(¢) and noise set
as N2(t) by CPy, Eq.(2);

9: Calculate objective loss L;_;)Cp (Eq.(6)) according to the

union of set, U.S3(¢) and U.NZ(2);
o 11 TP 10: Feature learning by gradient back-propagation and

updating model weights;
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Progressive Cluster Purification (PCP) 11: return f 6+

Model | Random F-S* DC* [2] IR [28] IS [30] Input Round-0 Round-1 Round-2 Round-3 Round-4
Acc | 321 93.1 80.6 80.8 83.6 AND
Model | Random AND [14] PCP  AND* PCP+
PCP
Acc | 32.1 84.2 84.7 86.3 87.3
Classifier | Weighted kNN (FC) | Linear Classifier (conv5) pcp*
Dataset | CIFAR10 CIFARI100 I CIFAR10  CIFARI00
DC* [2] 703 27.4 77.1 44.0
IR* [28] 68.1 39.6 76.6 49.5
IS* [30] 76.4 46.3 78.7 51.2
AND* [14] 76.1 44.2 79.2 52.8
PCP (Ours) 77.1 48.4 79.9 53.0 ‘ !
F-S 91.9 69.7 91.8 71.0 s G
Top1 (%) Top 1(%) Top 1 (%
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