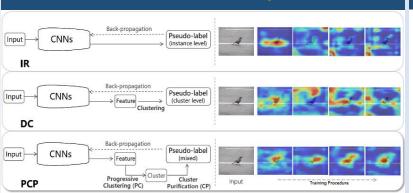
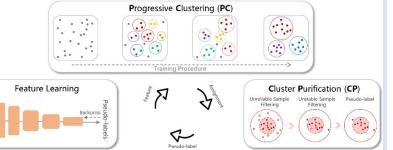


Progressive Cluster Purification

for Unsupervised Feature Learning


Yifei Zhang ^{1,2*}, Chang Liu^{3*}, Yu Zhou^{1†}, Wei Wang ^{1,2}, Weiping Wang ¹ and Qixiang Ye^{3†}

¹Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China


²School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

³University of Chinese Academy of Sciences, Beijing, China

Motivation and Comparison

Pipeline of PCP

Progressive Cluster Purification (PCP)

Algorithm

Algorithm 1 Progressive Cluster Purification.

Input: An imagery dataset X without labels; **Output:** CNN model f_{θ} with parameters θ ;

- 1: Preset embedding feature dimension D, training epochs T, cluster number N_{t_0} for stopping declining;
- 2: **for** epoch t = 1 **to** T **do**
- 3: Get the number of clusters $N_t = max(N_t, N_{t_0})$ during the process of **PC**, Eq.(1);
- 4: Obtain D-dimensional feature space V(t) by CNN model, $v(t) = f_{\theta_t}(x)$;
 - Implement k-means clustering algorithm to get $\bigcup_c S_c(t)$ with N_t clusters;
- for each cluster c = 1 to N_t do

Round-0

- 7: Split $S_c(t)$ into class consistent set $S_c^r(t)$ and noise set $N_c^r(t)$ by \mathbf{CP}_r ;
- 8: Update class consistent set as $\mathcal{S}_c^s(t)$ and noise set as $\mathcal{N}_c^s(t)$ by \mathbf{CP}_s , Eq.(2);
- 9: Calculate objective loss L_{pcp}^t (Eq.(6)) according to the union of set, $\bigcup_c S_c^s(t)$ and $\bigcup_c \mathcal{N}_c^s(t)$;
- Feature learning by gradient back-propagation and updating model weights;
- 11: **return** f_{θ} .

Input

Experiments

Model	Random	F-S*	DC* [2]	IR [28]	IS [30]
Acc	32.1	93.1	80.6	80.8	83.6
Model	Random	AND [14]	PCP	AND ⁺	PCP ⁺
Acc	32.1	84.2	84.7	86.3	87.3

Classifier	Weighted $kNN(FC)$		Linear Classifier (conv5)	
Dataset	CIFAR10	CIFAR100	CIFAR10	CIFAR100
DC* [2]	70.3	27.4	77.1	44.0
IR* [28]	68.1	39.6	76.6	49.5
IS* [30]	76.4	46.3	78.7	51.2
AND* [14]	76.1	44.2	79.2	52.8
PCP (Ours)	77.1	48.4	79.9	53.0
F-S	91.9	69.7	91.8	71.0

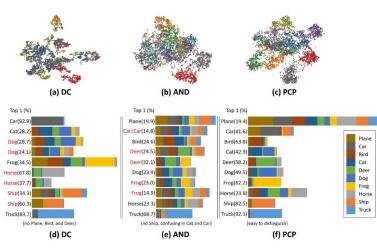
Contact

Email: zhangyifei0115@iie.ac.cn

Code: https://github.com/zhangyifei0115/PCP

Paper: https://arxiv.org/abs/2007.02577

Visualization


Round-1

Round-2

Round-3

Round-4

